含钛混合熔渣CO2氧化法清洁制备金红石

IF 3.8 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY Green Processing and Synthesis Pub Date : 2023-01-01 DOI:10.1515/gps-2023-0083
Jiqing Han, Qiuping Feng, Li Zhang
{"title":"含钛混合熔渣CO2氧化法清洁制备金红石","authors":"Jiqing Han, Qiuping Feng, Li Zhang","doi":"10.1515/gps-2023-0083","DOIUrl":null,"url":null,"abstract":"Abstract The effects of SiO2 and CO2 on the crystallization action of Ti-containing mixed molten slag (molten Ti-containing blast furnace slag and molten Ti slag) were discussed by thermodynamic calculation and specific experiments. The results of thermodynamic calculation indicated that the increase of SiO2 addition mass and CO2 oxidation time can promote the transformation of anosovite and sphene to rutile. The experiment results showed that the phase composition of modification slag was only rutile under the SiO2 addition mass of 110 g and the CO2 oxidation time of 180 s. Moreover, the formation theory of rutile was investigated. Using CO2 as an oxidizing gas can not only prepare rutile but also achieve carbon neutrality, which is a clean preparation method.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":"99 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clean preparation of rutile from Ti-containing mixed molten slag by CO<sub>2</sub> oxidation\",\"authors\":\"Jiqing Han, Qiuping Feng, Li Zhang\",\"doi\":\"10.1515/gps-2023-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effects of SiO2 and CO2 on the crystallization action of Ti-containing mixed molten slag (molten Ti-containing blast furnace slag and molten Ti slag) were discussed by thermodynamic calculation and specific experiments. The results of thermodynamic calculation indicated that the increase of SiO2 addition mass and CO2 oxidation time can promote the transformation of anosovite and sphene to rutile. The experiment results showed that the phase composition of modification slag was only rutile under the SiO2 addition mass of 110 g and the CO2 oxidation time of 180 s. Moreover, the formation theory of rutile was investigated. Using CO2 as an oxidizing gas can not only prepare rutile but also achieve carbon neutrality, which is a clean preparation method.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2023-0083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gps-2023-0083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要通过热力学计算和具体实验,探讨了sio2和co2对含钛混合熔渣(含钛高炉熔渣和含钛熔渣)结晶行为的影响。热力学计算结果表明,增加sio2添加量和CO 2氧化时间可以促进铁云石和榍石向金红石的转变。实验结果表明,当sio2添加质量为110 g, CO 2氧化时间为180 s时,改性渣的物相组成仅为金红石。并对金红石的形成机理进行了研究。利用co2作为氧化气体制备金红石,既可实现碳中和,是一种清洁的制备方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clean preparation of rutile from Ti-containing mixed molten slag by CO2 oxidation
Abstract The effects of SiO2 and CO2 on the crystallization action of Ti-containing mixed molten slag (molten Ti-containing blast furnace slag and molten Ti slag) were discussed by thermodynamic calculation and specific experiments. The results of thermodynamic calculation indicated that the increase of SiO2 addition mass and CO2 oxidation time can promote the transformation of anosovite and sphene to rutile. The experiment results showed that the phase composition of modification slag was only rutile under the SiO2 addition mass of 110 g and the CO2 oxidation time of 180 s. Moreover, the formation theory of rutile was investigated. Using CO2 as an oxidizing gas can not only prepare rutile but also achieve carbon neutrality, which is a clean preparation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Processing and Synthesis
Green Processing and Synthesis CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
6.70
自引率
9.30%
发文量
78
审稿时长
7 weeks
期刊介绍: Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.
期刊最新文献
Electrochemical analysis of copper-EDTA-ammonia-gold thiosulfate dissolution system Effect of phytogenic iron nanoparticles on the bio-fortification of wheat varieties Nanoscale molecular reactions in microbiological medicines in modern medical applications A study on the larvicidal and adulticidal potential of Cladostepus spongiosus macroalgae and green-fabricated silver nanoparticles against mosquito vectors Micro-impact-induced mechano-chemical synthesis of organic precursors from FeC/FeN and carbonates/nitrates in water and its extension to nucleobases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1