四自由度太阳能自主水下航行器的分层滑模控制器建模与设计

Tuan Nguyen Van, Phong Dinh Van, Tan Nguyen Cong, Hung Nguyen Chi
{"title":"四自由度太阳能自主水下航行器的分层滑模控制器建模与设计","authors":"Tuan Nguyen Van, Phong Dinh Van, Tan Nguyen Cong, Hung Nguyen Chi","doi":"10.18178/ijmerr.12.5.275-283","DOIUrl":null,"url":null,"abstract":"—Autonomous Underwater Vehicles (AUV) are automatic equipment that can move in 6 degrees of freedom according to the motion in the water. Modeling accurately AUV is very difficult because of the influence of factors such as hydrodynamic forces, time error, and environmental noise, etc. It is important that the controller designing needs to meet the requirements of stability and suitability to specific diving equipment models. The hydrodynamic equations are established with the assumed conditions. Controlling self-propelled diving equipment is a major challenge for researchers because of the complex, and nonlinear correlation between diving and operating environments. Therefore, high-quality control systems for the AUV should exhibit the ability to update the variability of the device's hydrodynamic coefficients to achieve the desired control quality. In this study, the authors focus on building a Hierarchical Sliding Mode Controller (HSMC) for Solar Autonomous Underwater Vehicles (S-AUV), the kinematics and dynamics of the underactuated attitude control adjusting system are analyzed. More precisely, the controller is designed based on the hydrodynamic model of the S-AUV. By employing the propulsion speed, the position of the steering blades as design variables, the dive of the S-AUV is stably controlled in location, velocity, and depth. For a given set of operating parameters, the simulation result shows that the developed controller exhibits errors within the allowed range of values.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Designing Hierarchical Sliding Mode Controller for a 4-DOF Solar Autonomous Underwater Vehicles\",\"authors\":\"Tuan Nguyen Van, Phong Dinh Van, Tan Nguyen Cong, Hung Nguyen Chi\",\"doi\":\"10.18178/ijmerr.12.5.275-283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Autonomous Underwater Vehicles (AUV) are automatic equipment that can move in 6 degrees of freedom according to the motion in the water. Modeling accurately AUV is very difficult because of the influence of factors such as hydrodynamic forces, time error, and environmental noise, etc. It is important that the controller designing needs to meet the requirements of stability and suitability to specific diving equipment models. The hydrodynamic equations are established with the assumed conditions. Controlling self-propelled diving equipment is a major challenge for researchers because of the complex, and nonlinear correlation between diving and operating environments. Therefore, high-quality control systems for the AUV should exhibit the ability to update the variability of the device's hydrodynamic coefficients to achieve the desired control quality. In this study, the authors focus on building a Hierarchical Sliding Mode Controller (HSMC) for Solar Autonomous Underwater Vehicles (S-AUV), the kinematics and dynamics of the underactuated attitude control adjusting system are analyzed. More precisely, the controller is designed based on the hydrodynamic model of the S-AUV. By employing the propulsion speed, the position of the steering blades as design variables, the dive of the S-AUV is stably controlled in location, velocity, and depth. For a given set of operating parameters, the simulation result shows that the developed controller exhibits errors within the allowed range of values.\",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.12.5.275-283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.12.5.275-283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Designing Hierarchical Sliding Mode Controller for a 4-DOF Solar Autonomous Underwater Vehicles
—Autonomous Underwater Vehicles (AUV) are automatic equipment that can move in 6 degrees of freedom according to the motion in the water. Modeling accurately AUV is very difficult because of the influence of factors such as hydrodynamic forces, time error, and environmental noise, etc. It is important that the controller designing needs to meet the requirements of stability and suitability to specific diving equipment models. The hydrodynamic equations are established with the assumed conditions. Controlling self-propelled diving equipment is a major challenge for researchers because of the complex, and nonlinear correlation between diving and operating environments. Therefore, high-quality control systems for the AUV should exhibit the ability to update the variability of the device's hydrodynamic coefficients to achieve the desired control quality. In this study, the authors focus on building a Hierarchical Sliding Mode Controller (HSMC) for Solar Autonomous Underwater Vehicles (S-AUV), the kinematics and dynamics of the underactuated attitude control adjusting system are analyzed. More precisely, the controller is designed based on the hydrodynamic model of the S-AUV. By employing the propulsion speed, the position of the steering blades as design variables, the dive of the S-AUV is stably controlled in location, velocity, and depth. For a given set of operating parameters, the simulation result shows that the developed controller exhibits errors within the allowed range of values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
25
期刊介绍: International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.
期刊最新文献
Design and Fabrication of a Semi-Automatic Multifunction Floor Cleaning Machine Effect Of Cutting Parameters On Tool Tip Temperature And Cutting Forces Of Copper Alloy Design and Development of Robot Base Crack Detection System for Railway Track Improving the Efficiency of a Conveyor System in an Automated Manufacturing Environment Using a Model-Based Approach Dimensional Synthesis of a Six-bar Shaper Mechanism with the Genetic Algorithm Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1