{"title":"用量子压缩技术给电池充电","authors":"Federico Centrone, Luca Mancino, Mauro Paternostro","doi":"10.1103/physreva.108.052213","DOIUrl":null,"url":null,"abstract":"We present a scheme for the charging of a quantum battery based on the dynamics of an open quantum system undergoing coherent quantum squeezing and affected by an incoherent squeezed thermal bath. We show that quantum coherence, as instigated by the application of coherent squeezing, is key in the determination of the performance of the charging process, which is efficiency-enhanced at low environmental temperatures and under a strong squeezed driving.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Charging batteries with quantum squeezing\",\"authors\":\"Federico Centrone, Luca Mancino, Mauro Paternostro\",\"doi\":\"10.1103/physreva.108.052213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scheme for the charging of a quantum battery based on the dynamics of an open quantum system undergoing coherent quantum squeezing and affected by an incoherent squeezed thermal bath. We show that quantum coherence, as instigated by the application of coherent squeezing, is key in the determination of the performance of the charging process, which is efficiency-enhanced at low environmental temperatures and under a strong squeezed driving.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.108.052213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.052213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a scheme for the charging of a quantum battery based on the dynamics of an open quantum system undergoing coherent quantum squeezing and affected by an incoherent squeezed thermal bath. We show that quantum coherence, as instigated by the application of coherent squeezing, is key in the determination of the performance of the charging process, which is efficiency-enhanced at low environmental temperatures and under a strong squeezed driving.