混凝土疲劳分析模型的研究进展

IF 2.2 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Cmes-computer Modeling in Engineering & Sciences Pub Date : 2023-01-01 DOI:10.32604/cmes.2022.020160
Xiaoli Wei, D. A. Makhloof, Xiaodan Ren
{"title":"混凝土疲劳分析模型的研究进展","authors":"Xiaoli Wei, D. A. Makhloof, Xiaodan Ren","doi":"10.32604/cmes.2022.020160","DOIUrl":null,"url":null,"abstract":"Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a detailed review of fatigue computing methodology for concrete is presented, and the characteristics of different types of fatigue models have been stated and discussed.","PeriodicalId":10451,"journal":{"name":"Cmes-computer Modeling in Engineering & Sciences","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analytical Models of Concrete Fatigue: A State-of-the-Art Review\",\"authors\":\"Xiaoli Wei, D. A. Makhloof, Xiaodan Ren\",\"doi\":\"10.32604/cmes.2022.020160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a detailed review of fatigue computing methodology for concrete is presented, and the characteristics of different types of fatigue models have been stated and discussed.\",\"PeriodicalId\":10451,\"journal\":{\"name\":\"Cmes-computer Modeling in Engineering & Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmes-computer Modeling in Engineering & Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/cmes.2022.020160\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmes-computer Modeling in Engineering & Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/cmes.2022.020160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

混凝土结构在长期低振幅荷载作用下的疲劳破坏现象越来越受到人们的关注。一些结构,如风力发电塔、海上平台和高速铁路,在其预期寿命内可能会承受数百万次的循环载荷。在过去的一个世纪里,混凝土疲劳的分析方法不断涌现。混凝土疲劳计算模型可分为四大类:基于疲劳试验的经验模型、断裂力学中的疲劳裂纹扩展模型、基于损伤力学的疲劳损伤演化模型和先进机器学习模型。本文详细介绍了混凝土的疲劳计算方法,并对不同类型的疲劳模型的特点进行了阐述和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Models of Concrete Fatigue: A State-of-the-Art Review
Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a detailed review of fatigue computing methodology for concrete is presented, and the characteristics of different types of fatigue models have been stated and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cmes-computer Modeling in Engineering & Sciences
Cmes-computer Modeling in Engineering & Sciences ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.80
自引率
16.70%
发文量
298
审稿时长
7.8 months
期刊介绍: This journal publishes original research papers of reasonable permanent value, in the areas of computational mechanics, computational physics, computational chemistry, and computational biology, pertinent to solids, fluids, gases, biomaterials, and other continua. Various length scales (quantum, nano, micro, meso, and macro), and various time scales ( picoseconds to hours) are of interest. Papers which deal with multi-physics problems, as well as those which deal with the interfaces of mechanics, chemistry, and biology, are particularly encouraged. New computational approaches, and more efficient algorithms, which eventually make near-real-time computations possible, are welcome. Original papers dealing with new methods such as meshless methods, and mesh-reduction methods are sought.
期刊最新文献
ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules. A Survey on Artificial Intelligence in Posture Recognition. A Survey of Convolutional Neural Network in Breast Cancer. A Novel SE-CNN Attention Architecture for sEMG-Based Hand Gesture Recognition ER-Net: Efficient Recalibration Network for Multi-View Multi-Person 3D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1