Mahmut Kasap, Metin Yılmaz, Eyüp Çinar, Ahmet Yazıcı
{"title":"基于非监督差异性的自主移动机器人故障检测方法","authors":"Mahmut Kasap, Metin Yılmaz, Eyüp Çinar, Ahmet Yazıcı","doi":"10.1007/s10514-023-10144-2","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous robots are one of the critical components in modern manufacturing systems. For this reason, the uninterrupted operation of robots in manufacturing is important for the sustainability of autonomy. Detecting possible fault symptoms that may cause failures within a work environment will help to eliminate interrupted operations. When supervised learning methods are considered, obtaining and storing labeled, historical training data in a manufacturing environment with faults is a challenging task. In addition, sensors in mobile devices such as robots are exposed to different noisy external conditions in production environments affecting data labels and fault mapping. Furthermore, relying on a single sensor data for fault detection often causes false alarms for equipment monitoring. Our study takes requirements into consideration and proposes a new unsupervised machine-learning algorithm to detect possible operational faults encountered by autonomous mobile robots. The method suggests using an ensemble of multi-sensor information fusion at the decision level by voting to enhance decision reliability. The proposed technique relies on dissimilarity-based sensor data segmentation with an adaptive threshold control. It has been tested experimentally on an autonomous mobile robot. The experimental results show that the proposed method is effective for detecting operational anomalies. Furthermore, the proposed voting mechanism is also capable of eliminating false positives in case of a single source of information is utilized.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 8","pages":"1503 - 1518"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised dissimilarity-based fault detection method for autonomous mobile robots\",\"authors\":\"Mahmut Kasap, Metin Yılmaz, Eyüp Çinar, Ahmet Yazıcı\",\"doi\":\"10.1007/s10514-023-10144-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autonomous robots are one of the critical components in modern manufacturing systems. For this reason, the uninterrupted operation of robots in manufacturing is important for the sustainability of autonomy. Detecting possible fault symptoms that may cause failures within a work environment will help to eliminate interrupted operations. When supervised learning methods are considered, obtaining and storing labeled, historical training data in a manufacturing environment with faults is a challenging task. In addition, sensors in mobile devices such as robots are exposed to different noisy external conditions in production environments affecting data labels and fault mapping. Furthermore, relying on a single sensor data for fault detection often causes false alarms for equipment monitoring. Our study takes requirements into consideration and proposes a new unsupervised machine-learning algorithm to detect possible operational faults encountered by autonomous mobile robots. The method suggests using an ensemble of multi-sensor information fusion at the decision level by voting to enhance decision reliability. The proposed technique relies on dissimilarity-based sensor data segmentation with an adaptive threshold control. It has been tested experimentally on an autonomous mobile robot. The experimental results show that the proposed method is effective for detecting operational anomalies. Furthermore, the proposed voting mechanism is also capable of eliminating false positives in case of a single source of information is utilized.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"47 8\",\"pages\":\"1503 - 1518\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10144-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10144-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unsupervised dissimilarity-based fault detection method for autonomous mobile robots
Autonomous robots are one of the critical components in modern manufacturing systems. For this reason, the uninterrupted operation of robots in manufacturing is important for the sustainability of autonomy. Detecting possible fault symptoms that may cause failures within a work environment will help to eliminate interrupted operations. When supervised learning methods are considered, obtaining and storing labeled, historical training data in a manufacturing environment with faults is a challenging task. In addition, sensors in mobile devices such as robots are exposed to different noisy external conditions in production environments affecting data labels and fault mapping. Furthermore, relying on a single sensor data for fault detection often causes false alarms for equipment monitoring. Our study takes requirements into consideration and proposes a new unsupervised machine-learning algorithm to detect possible operational faults encountered by autonomous mobile robots. The method suggests using an ensemble of multi-sensor information fusion at the decision level by voting to enhance decision reliability. The proposed technique relies on dissimilarity-based sensor data segmentation with an adaptive threshold control. It has been tested experimentally on an autonomous mobile robot. The experimental results show that the proposed method is effective for detecting operational anomalies. Furthermore, the proposed voting mechanism is also capable of eliminating false positives in case of a single source of information is utilized.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.