{"title":"软基上土工格栅加筋小体积未铺路面性能的数值模拟与预测","authors":"Boon Tiong Chua, Kali Prasad Nepal","doi":"10.1007/s42947-023-00389-6","DOIUrl":null,"url":null,"abstract":"Abstract Pavement performance is usually predicted by large-scale laboratory experiments, expensive field tests and/or comparatively cheaper numerical modelling alternative. In this study, a finite element limiting strain model has been developed to investigate the strain response of both unreinforced and geogrid-reinforced pavements on unpaved roads where the geogrid is placed at the bottom of the unbound granular base layer. A two-dimensional (2D) axisymmetric finite element model (FEM) is used to analyse the behaviour of both unreinforced and geogrid-reinforced granular base. The critical pavement responses (vertical surface deformation, compressive strain and compressive stress at the top of subgrade, etc.) are simulated numerically using ABAQUS. These critical responses are used to develop the pavement performance models (strain limiting models) and to predict long-term service life of pavement or the reduction of thickness of granular base for equivalent service life or a combination of both. The parametric results are then used to develop design charts to aid practitioners to use directly in designs. The numerical model is verified using published literature-based information and found to be reasonable. The results show that the traffic benefit ratio (TBR) of 3.1 at a 20 mm rut depth can be achieved for a thin granular base built over soft subgrade using a medium stiff geogrid.","PeriodicalId":53602,"journal":{"name":"International Journal of Pavement Research and Technology","volume":"40 3","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modelling and Predicting Performance of Geogrid-Reinforced Low-Volume Unpaved Roads over Soft Subgrades\",\"authors\":\"Boon Tiong Chua, Kali Prasad Nepal\",\"doi\":\"10.1007/s42947-023-00389-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pavement performance is usually predicted by large-scale laboratory experiments, expensive field tests and/or comparatively cheaper numerical modelling alternative. In this study, a finite element limiting strain model has been developed to investigate the strain response of both unreinforced and geogrid-reinforced pavements on unpaved roads where the geogrid is placed at the bottom of the unbound granular base layer. A two-dimensional (2D) axisymmetric finite element model (FEM) is used to analyse the behaviour of both unreinforced and geogrid-reinforced granular base. The critical pavement responses (vertical surface deformation, compressive strain and compressive stress at the top of subgrade, etc.) are simulated numerically using ABAQUS. These critical responses are used to develop the pavement performance models (strain limiting models) and to predict long-term service life of pavement or the reduction of thickness of granular base for equivalent service life or a combination of both. The parametric results are then used to develop design charts to aid practitioners to use directly in designs. The numerical model is verified using published literature-based information and found to be reasonable. The results show that the traffic benefit ratio (TBR) of 3.1 at a 20 mm rut depth can be achieved for a thin granular base built over soft subgrade using a medium stiff geogrid.\",\"PeriodicalId\":53602,\"journal\":{\"name\":\"International Journal of Pavement Research and Technology\",\"volume\":\"40 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pavement Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42947-023-00389-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pavement Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42947-023-00389-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Numerical Modelling and Predicting Performance of Geogrid-Reinforced Low-Volume Unpaved Roads over Soft Subgrades
Abstract Pavement performance is usually predicted by large-scale laboratory experiments, expensive field tests and/or comparatively cheaper numerical modelling alternative. In this study, a finite element limiting strain model has been developed to investigate the strain response of both unreinforced and geogrid-reinforced pavements on unpaved roads where the geogrid is placed at the bottom of the unbound granular base layer. A two-dimensional (2D) axisymmetric finite element model (FEM) is used to analyse the behaviour of both unreinforced and geogrid-reinforced granular base. The critical pavement responses (vertical surface deformation, compressive strain and compressive stress at the top of subgrade, etc.) are simulated numerically using ABAQUS. These critical responses are used to develop the pavement performance models (strain limiting models) and to predict long-term service life of pavement or the reduction of thickness of granular base for equivalent service life or a combination of both. The parametric results are then used to develop design charts to aid practitioners to use directly in designs. The numerical model is verified using published literature-based information and found to be reasonable. The results show that the traffic benefit ratio (TBR) of 3.1 at a 20 mm rut depth can be achieved for a thin granular base built over soft subgrade using a medium stiff geogrid.
期刊介绍:
The objective of the International Journal of Pavement Research and Technology is to provide a platform to promote exchange of ideas among pavement engineering communities around the world. The journal attempts to disseminate information on all aspects of pavement engineering and technology developed through research and practical experiences.The journal is published bi-monthly, in January, March, May, July, September, and November each year (six issues in each volume). Contributions in the form of research paper, review, or discussions will be considered for publication. To cover a wide range of pavement engineering disciplines and industrial applications, the journal includes the following topics:
Advanced analytical and computational techniques in pavement engineeringPavement mechanics and pavement designPavement construction, performance, management, maintenance, and rehabilitation techniquesPavement materialsPavement recyclingPavement surface and subsurface drainageEnvironmental issues associated with pavement materials and constructionAccelerated and full-scale pavement testingNon-destructive testingInnovative design method and practicePavement-vehicle interaction and safety issuePavement PreservationPavement Instrumentation