通过像素重新分配来消除模糊的分辨率增强

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2023-10-27 DOI:10.1117/1.ap.5.6.066004
Bingying Zhao, Jerome Mertz
{"title":"通过像素重新分配来消除模糊的分辨率增强","authors":"Bingying Zhao, Jerome Mertz","doi":"10.1117/1.ap.5.6.066004","DOIUrl":null,"url":null,"abstract":"Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"68 6","pages":"0"},"PeriodicalIF":20.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution enhancement with deblurring by pixel reassignment\",\"authors\":\"Bingying Zhao, Jerome Mertz\",\"doi\":\"10.1117/1.ap.5.6.066004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"68 6\",\"pages\":\"0\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.ap.5.6.066004\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.ap.5.6.066004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提高荧光显微镜的空间分辨率一直是成像界面临的挑战。为了应对这一挑战,已经采取了各种方法,从仪器开发到图像后处理。后者的一个例子是反褶积,其中图像是基于显微镜点扩散函数的知识进行数字去模糊。然而,反褶积很容易导致噪声放大伪影。通过后处理去模糊也可能导致负或未能保持样本和图像之间的局部线性。我们在这里描述了一个简单的图像去模糊算法,基于像素重新分配,固有地避免了这样的工件,可以应用于一般的显微镜模式和荧光团类型。我们的算法有助于区分附近的荧光团,即使这些荧光团之间的距离小于传统的分辨率限制,有助于促进,例如,在密集样品中应用单分子定位显微镜。我们证明了该算法在各种成像条件下的通用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resolution enhancement with deblurring by pixel reassignment
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Organic near-infrared optoelectronic materials and devices: an overview Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces Quantum dots for optoelectronics Surfing the metasurface: a conversation with Din Ping Tsai Nonlinear chiral metaphotonics: a perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1