气相色谱和热循环吸收技术用于水分解系统中氢同位素的分离

Hydrogen Pub Date : 2023-09-21 DOI:10.3390/hydrogen4030044
Silvano Tosti
{"title":"气相色谱和热循环吸收技术用于水分解系统中氢同位素的分离","authors":"Silvano Tosti","doi":"10.3390/hydrogen4030044","DOIUrl":null,"url":null,"abstract":"This work introduces state-of-the-art water detritiation processes and discusses the main technologies and materials adopted. Focus is given to the gas chromatography (GC) and the thermal cycling absorption process (TCAP), which are studied as potential back-end technologies for tritium recovery through a water detritiation system designed for a small-scale unit. GC and the TCAP are evaluated critically in order to establish their applicability for the final purification of the DT stream recovered at the bottom of the cryo-distillation column of a water detritiation unit. Both solutions (GC and the TCAP with an inverse column) exhibit safe and feasible operation modes and are characterised by a good technological level; furthermore, both of these processes meet the main design specifications required by the proposed application. However, the use of GC is preferred, since this system can operate with modest temperature cycling and producing streams (D2 and T2) of better purity.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas Chromatography and Thermal Cycling Absorption Techniques for Hydrogen Isotopes Separation in Water Detritiation Systems\",\"authors\":\"Silvano Tosti\",\"doi\":\"10.3390/hydrogen4030044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces state-of-the-art water detritiation processes and discusses the main technologies and materials adopted. Focus is given to the gas chromatography (GC) and the thermal cycling absorption process (TCAP), which are studied as potential back-end technologies for tritium recovery through a water detritiation system designed for a small-scale unit. GC and the TCAP are evaluated critically in order to establish their applicability for the final purification of the DT stream recovered at the bottom of the cryo-distillation column of a water detritiation unit. Both solutions (GC and the TCAP with an inverse column) exhibit safe and feasible operation modes and are characterised by a good technological level; furthermore, both of these processes meet the main design specifications required by the proposed application. However, the use of GC is preferred, since this system can operate with modest temperature cycling and producing streams (D2 and T2) of better purity.\",\"PeriodicalId\":13230,\"journal\":{\"name\":\"Hydrogen\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrogen4030044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrogen4030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了目前最先进的水降解工艺,并讨论了所采用的主要技术和材料。重点介绍了气相色谱法(GC)和热循环吸收法(TCAP),研究了这两种方法作为小型装置水除氚系统回收氚的潜在后端技术。对GC和TCAP进行了严格的评估,以确定它们对水分解装置冷冻精馏塔底部回收的DT流的最终净化的适用性。两种方案(气相色谱和带反柱的TCAP)均表现出安全可行的运行模式,技术水平较高;此外,这两种工艺都符合拟议应用程序所需的主要设计规范。然而,使用气相色谱是首选的,因为该系统可以在适度的温度循环下运行,并产生纯度更高的流(D2和T2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas Chromatography and Thermal Cycling Absorption Techniques for Hydrogen Isotopes Separation in Water Detritiation Systems
This work introduces state-of-the-art water detritiation processes and discusses the main technologies and materials adopted. Focus is given to the gas chromatography (GC) and the thermal cycling absorption process (TCAP), which are studied as potential back-end technologies for tritium recovery through a water detritiation system designed for a small-scale unit. GC and the TCAP are evaluated critically in order to establish their applicability for the final purification of the DT stream recovered at the bottom of the cryo-distillation column of a water detritiation unit. Both solutions (GC and the TCAP with an inverse column) exhibit safe and feasible operation modes and are characterised by a good technological level; furthermore, both of these processes meet the main design specifications required by the proposed application. However, the use of GC is preferred, since this system can operate with modest temperature cycling and producing streams (D2 and T2) of better purity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of the Temperature, Radiation, and Heat Flux Distribution of a Hydrogen and a Methane Flame in a Crucible Furnace Using Numerical Simulation Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan The Characteristics of a Ni/Cr/Ru Catalyst for a Biogas Dry Reforming Membrane Reactor Using a Pd/Cu Membrane and a Comparison of It with a Ni/Cr Catalyst PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1