生物炭改性层状双氢氧化物对苯酚的高效吸附

Amri Amri, Rezonsi Rezonsi, Nur Ahmad, Tarmizi Taher, Neza Rahayu Palapa, Risfidian Mohadi, Aldes Lesbani
{"title":"生物炭改性层状双氢氧化物对苯酚的高效吸附","authors":"Amri Amri, Rezonsi Rezonsi, Nur Ahmad, Tarmizi Taher, Neza Rahayu Palapa, Risfidian Mohadi, Aldes Lesbani","doi":"10.9767/bcrec.19898","DOIUrl":null,"url":null,"abstract":"All activities require drinking water. The existence of waste makes water unfit for consumption. Phenol waste is one example of waste that is often found. The toxic and corrosive nature of phenol is very dangerous for life, so its presence must be considered. The adsorption process was carried out using NiAl and ZnAl layered double hydroxides composites with biochar to eliminate the presence of phenol waste The adsorption process was carried out using NiAl and ZnAl layered double hydroxydes materials which were composited with biochar to eliminate the presence of phenol waste. NiAl-Biochar and ZnAl-Biochar composites were successfully prepared, as determined by XRD, FTIR, SEM, and BET analyses. NiAl layered double hydroxide surface area grew from 92.683 to 438.942 m2/g while ZnAl layered double hydroxide surface area increased from 9.621 to 58.461 m2/g. pHpzc of material is between 5.1 and 9.4. Optimal pH of NiAl and ZnAl layered double hydroxide is 3, optimum pH of NiAl-Biochar and ZnAl-Biochar is 5, and optimum pH of Biochar is 7. All kinetic and isotherm models for all materials were pseudo-second-order and Freundlich, respectively. NiAl-Biochar and ZnAl-Biochar have maximal adsorption capacities of 74.62 mg/g and 52.91 mg/g, respectively. The material's reusability indicates that NiAl-Biochar has superior qualities and may be reused for up to five cycles, followed by ZnAl-Biochar, NiAl layered double hydroxide, ZnAl layered double hydroxide, and Biochar. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9329,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-Modified Layered Double Hydroxide for Highly Efficient on Phenol Adsorption\",\"authors\":\"Amri Amri, Rezonsi Rezonsi, Nur Ahmad, Tarmizi Taher, Neza Rahayu Palapa, Risfidian Mohadi, Aldes Lesbani\",\"doi\":\"10.9767/bcrec.19898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All activities require drinking water. The existence of waste makes water unfit for consumption. Phenol waste is one example of waste that is often found. The toxic and corrosive nature of phenol is very dangerous for life, so its presence must be considered. The adsorption process was carried out using NiAl and ZnAl layered double hydroxides composites with biochar to eliminate the presence of phenol waste The adsorption process was carried out using NiAl and ZnAl layered double hydroxydes materials which were composited with biochar to eliminate the presence of phenol waste. NiAl-Biochar and ZnAl-Biochar composites were successfully prepared, as determined by XRD, FTIR, SEM, and BET analyses. NiAl layered double hydroxide surface area grew from 92.683 to 438.942 m2/g while ZnAl layered double hydroxide surface area increased from 9.621 to 58.461 m2/g. pHpzc of material is between 5.1 and 9.4. Optimal pH of NiAl and ZnAl layered double hydroxide is 3, optimum pH of NiAl-Biochar and ZnAl-Biochar is 5, and optimum pH of Biochar is 7. All kinetic and isotherm models for all materials were pseudo-second-order and Freundlich, respectively. NiAl-Biochar and ZnAl-Biochar have maximal adsorption capacities of 74.62 mg/g and 52.91 mg/g, respectively. The material's reusability indicates that NiAl-Biochar has superior qualities and may be reused for up to five cycles, followed by ZnAl-Biochar, NiAl layered double hydroxide, ZnAl layered double hydroxide, and Biochar. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9329,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.19898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.19898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

所有活动都需要饮用水。废物的存在使水不适于饮用。苯酚废料就是经常发现的一种废料。苯酚的毒性和腐蚀性对生命是非常危险的,所以必须考虑它的存在。采用NiAl和ZnAl层状双羟基复合材料与生物炭进行吸附去除苯酚废物,采用NiAl和ZnAl层状双羟基材料与生物炭复合进行吸附去除苯酚废物。通过XRD、FTIR、SEM和BET分析,成功制备了nial -生物炭和znal -生物炭复合材料。NiAl层状双氢氧化物比表面积从92.683增加到438.942 m2/g, ZnAl层状双氢氧化物比表面积从9.621增加到58.461 m2/g。材料的pHpzc在5.1 - 9.4之间。NiAl和ZnAl层状双氢氧化物的最佳pH为3,NiAl-生物炭和ZnAl-生物炭的最佳pH为5,生物炭的最佳pH为7。所有材料的动力学和等温线模型分别为伪二阶和Freundlich模型。NiAl-Biochar和ZnAl-Biochar的最大吸附量分别为74.62 mg/g和52.91 mg/g。材料的可重复使用性表明,NiAl-Biochar具有优异的质量,可重复使用多达5个循环,其次是ZnAl-Biochar、NiAl层状双氢氧化物、ZnAl层状双氢氧化物和生物炭。版权所有©2023作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biochar-Modified Layered Double Hydroxide for Highly Efficient on Phenol Adsorption
All activities require drinking water. The existence of waste makes water unfit for consumption. Phenol waste is one example of waste that is often found. The toxic and corrosive nature of phenol is very dangerous for life, so its presence must be considered. The adsorption process was carried out using NiAl and ZnAl layered double hydroxides composites with biochar to eliminate the presence of phenol waste The adsorption process was carried out using NiAl and ZnAl layered double hydroxydes materials which were composited with biochar to eliminate the presence of phenol waste. NiAl-Biochar and ZnAl-Biochar composites were successfully prepared, as determined by XRD, FTIR, SEM, and BET analyses. NiAl layered double hydroxide surface area grew from 92.683 to 438.942 m2/g while ZnAl layered double hydroxide surface area increased from 9.621 to 58.461 m2/g. pHpzc of material is between 5.1 and 9.4. Optimal pH of NiAl and ZnAl layered double hydroxide is 3, optimum pH of NiAl-Biochar and ZnAl-Biochar is 5, and optimum pH of Biochar is 7. All kinetic and isotherm models for all materials were pseudo-second-order and Freundlich, respectively. NiAl-Biochar and ZnAl-Biochar have maximal adsorption capacities of 74.62 mg/g and 52.91 mg/g, respectively. The material's reusability indicates that NiAl-Biochar has superior qualities and may be reused for up to five cycles, followed by ZnAl-Biochar, NiAl layered double hydroxide, ZnAl layered double hydroxide, and Biochar. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of W-Doped TiO2 Material Ratio Using One-Step Solvothermal Method and Treatment Orientation of Volatile Organic Compounds Preparation, Characterization, and Photocatalytic Activity of Ni-Cd/Al2O3 Composite Catalyst Kinetic Study of the Aluminum–water Reaction Using NaOH/NaAlO2 Catalyst for Hydrogen Production from Aluminum Cans Waste Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic Ag-TiO2 for Efficient Methylene Blue Photodegradation Under Visible Light Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1