基于决策树方法的电影推荐系统

Muhammad Bilal Rafif Azaki, Z. K. A. Baizal
{"title":"基于决策树方法的电影推荐系统","authors":"Muhammad Bilal Rafif Azaki, Z. K. A. Baizal","doi":"10.29100/jipi.v8i3.3867","DOIUrl":null,"url":null,"abstract":"In this modern era, many things that can be done online, one of which is watching movies. When the number of movies increases, people often find it difficult to decide which movie to watch next. To solve this problem, a useful recommendation system was developed to find movies that one might like based on movies that have been watched before. This research develops a movie recommendation system using Collaborative Filtering (CF) with the Decision Tree algorithm. In this study, the data used were movie data and ratings obtained from the grouplens.org website. Then the movielens dataset is filtered and only saves movies with a rating of more than 50 that are used in the recommendation system. In this study, Mean Absolute Error (MAE) is used as a method to assess the accuracy of the movie recommendation system. Based on the research that has been done, Decision Tree gets better results with an MAE value of 0,942 compared to Collaborative Filtering with an MAE value of 1,242.","PeriodicalId":32696,"journal":{"name":"JIPI Jurnal IPA dan Pembelajaran IPA","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movie Recommender System Using Decision Tree Method\",\"authors\":\"Muhammad Bilal Rafif Azaki, Z. K. A. Baizal\",\"doi\":\"10.29100/jipi.v8i3.3867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this modern era, many things that can be done online, one of which is watching movies. When the number of movies increases, people often find it difficult to decide which movie to watch next. To solve this problem, a useful recommendation system was developed to find movies that one might like based on movies that have been watched before. This research develops a movie recommendation system using Collaborative Filtering (CF) with the Decision Tree algorithm. In this study, the data used were movie data and ratings obtained from the grouplens.org website. Then the movielens dataset is filtered and only saves movies with a rating of more than 50 that are used in the recommendation system. In this study, Mean Absolute Error (MAE) is used as a method to assess the accuracy of the movie recommendation system. Based on the research that has been done, Decision Tree gets better results with an MAE value of 0,942 compared to Collaborative Filtering with an MAE value of 1,242.\",\"PeriodicalId\":32696,\"journal\":{\"name\":\"JIPI Jurnal IPA dan Pembelajaran IPA\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIPI Jurnal IPA dan Pembelajaran IPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29100/jipi.v8i3.3867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIPI Jurnal IPA dan Pembelajaran IPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29100/jipi.v8i3.3867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个现代时代,很多事情都可以在网上完成,其中之一就是看电影。当电影数量增加时,人们常常发现很难决定接下来看哪部电影。为了解决这个问题,我们开发了一个有用的推荐系统,可以根据之前看过的电影来找到人们可能喜欢的电影。本研究开发了一个基于决策树算法的协同过滤(CF)电影推荐系统。在本研究中,使用的数据是从grouplens.org网站获得的电影数据和评分。然后对movielens数据集进行过滤,只保存评分超过50的电影,并用于推荐系统。在本研究中,使用平均绝对误差(MAE)作为评估电影推荐系统准确性的方法。根据已有的研究,决策树的MAE值为0.942,比协同过滤的MAE值为1242得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Movie Recommender System Using Decision Tree Method
In this modern era, many things that can be done online, one of which is watching movies. When the number of movies increases, people often find it difficult to decide which movie to watch next. To solve this problem, a useful recommendation system was developed to find movies that one might like based on movies that have been watched before. This research develops a movie recommendation system using Collaborative Filtering (CF) with the Decision Tree algorithm. In this study, the data used were movie data and ratings obtained from the grouplens.org website. Then the movielens dataset is filtered and only saves movies with a rating of more than 50 that are used in the recommendation system. In this study, Mean Absolute Error (MAE) is used as a method to assess the accuracy of the movie recommendation system. Based on the research that has been done, Decision Tree gets better results with an MAE value of 0,942 compared to Collaborative Filtering with an MAE value of 1,242.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊最新文献
The Eligibility of the Encyclopedia of Circulatory System Diseases and Disorders Based on Traditional Medicinal Plants for Hypertension as Learning Media Application of Problem Based Learning Assisted by Reward and Punishment to Improve Self-Regulation of Junior High School Students Application of Process Portofolio Assessment Based on Guided Inquiry Model in Improving Critical Thinking Skills and Learning Outcomes of Science Education Students Development of Chatbot Learning Media on Earth Rotation and Revolution Materials for Grade 6 Elementary School Students Analysis of Knowledge and Understanding of Regarding Waste Management in the Aie Dingin Landfill Area in Balai Gadang Koto Tangah District Padang City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1