{"title":"基于地理高斯过程的多尺度空间变系数建模","authors":"Alexis Comber, Paul Harris, Chris Brunsdon","doi":"10.1080/13658816.2023.2270285","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel spatially varying coefficient (SVC) regression through a Geographical Gaussian Process GAM (GGP-GAM): a Generalized Additive Model (GAM) with Gaussian Process (GP) splines parameterised at observation locations. A GGP-GAM was applied to multiple simulated coefficient datasets exhibiting varying degrees of spatial heterogeneity and out-performed the SVC brand-leader, Multiscale Geographically Weighted Regression (MGWR), under a range of fit metrics. Both were then applied to a Brexit case study and compared, with MGWR marginally out-performing GGP-GAM. The theoretical frameworks and implementation of both approaches are discussed: GWR models calibrate multiple models whereas GAMs provide a full single model; GAMs can automatically penalise local collinearity; GWR-based approaches are computationally more demanding; MGWR is still only for Gaussian responses; MGWR bandwidths are intuitive indicators of spatial heterogeneity. GGP-GAM calibration and tuning are also discussed and areas of future work are identified, including the creation of a user-friendly package to support model creation and coefficient mapping, and to facilitate ease of comparison with alternate SVC models. A final observation that GGP-GAMs have the potential to overcome some of the long-standing reservations about GWR-based regression methods and to elevate the perception of SVCs amongst the broader community.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"156 3","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale spatially varying coefficient modelling using a Geographical Gaussian Process GAM\",\"authors\":\"Alexis Comber, Paul Harris, Chris Brunsdon\",\"doi\":\"10.1080/13658816.2023.2270285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel spatially varying coefficient (SVC) regression through a Geographical Gaussian Process GAM (GGP-GAM): a Generalized Additive Model (GAM) with Gaussian Process (GP) splines parameterised at observation locations. A GGP-GAM was applied to multiple simulated coefficient datasets exhibiting varying degrees of spatial heterogeneity and out-performed the SVC brand-leader, Multiscale Geographically Weighted Regression (MGWR), under a range of fit metrics. Both were then applied to a Brexit case study and compared, with MGWR marginally out-performing GGP-GAM. The theoretical frameworks and implementation of both approaches are discussed: GWR models calibrate multiple models whereas GAMs provide a full single model; GAMs can automatically penalise local collinearity; GWR-based approaches are computationally more demanding; MGWR is still only for Gaussian responses; MGWR bandwidths are intuitive indicators of spatial heterogeneity. GGP-GAM calibration and tuning are also discussed and areas of future work are identified, including the creation of a user-friendly package to support model creation and coefficient mapping, and to facilitate ease of comparison with alternate SVC models. A final observation that GGP-GAMs have the potential to overcome some of the long-standing reservations about GWR-based regression methods and to elevate the perception of SVCs amongst the broader community.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"156 3\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2270285\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2270285","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multiscale spatially varying coefficient modelling using a Geographical Gaussian Process GAM
This paper proposes a novel spatially varying coefficient (SVC) regression through a Geographical Gaussian Process GAM (GGP-GAM): a Generalized Additive Model (GAM) with Gaussian Process (GP) splines parameterised at observation locations. A GGP-GAM was applied to multiple simulated coefficient datasets exhibiting varying degrees of spatial heterogeneity and out-performed the SVC brand-leader, Multiscale Geographically Weighted Regression (MGWR), under a range of fit metrics. Both were then applied to a Brexit case study and compared, with MGWR marginally out-performing GGP-GAM. The theoretical frameworks and implementation of both approaches are discussed: GWR models calibrate multiple models whereas GAMs provide a full single model; GAMs can automatically penalise local collinearity; GWR-based approaches are computationally more demanding; MGWR is still only for Gaussian responses; MGWR bandwidths are intuitive indicators of spatial heterogeneity. GGP-GAM calibration and tuning are also discussed and areas of future work are identified, including the creation of a user-friendly package to support model creation and coefficient mapping, and to facilitate ease of comparison with alternate SVC models. A final observation that GGP-GAMs have the potential to overcome some of the long-standing reservations about GWR-based regression methods and to elevate the perception of SVCs amongst the broader community.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.