基于代码的残差校正伪距测量区域GPS定轨

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2023-10-27 DOI:10.1515/jag-2023-0044
Hong Sheng Lee, Wan Anom Wan Aris, Tajul Ariffin Musa, Ahmad Zuri Sha’ameri, Ooi Wei Han, Dong-Ha Lee, Mohammad Asrul Mustafar
{"title":"基于代码的残差校正伪距测量区域GPS定轨","authors":"Hong Sheng Lee, Wan Anom Wan Aris, Tajul Ariffin Musa, Ahmad Zuri Sha’ameri, Ooi Wei Han, Dong-Ha Lee, Mohammad Asrul Mustafar","doi":"10.1515/jag-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract The study introduces the concept of regional GPS orbit determination, whereby GPS satellite positions are determined using GPS measurements from locally or regional distributed stations. The importance and characteristics of regional GPS orbit are briefly discussed. The technique used to determine the regional GPS satellite position is coined Inverse Single Point Positioning (ISPP). Code-based pseudorange is used and improved using residual correction model. Two designs of station distribution are selected in this study, which only cover stations in Malaysia and stations situated 8000 km from a reference point in Malaysia. The root-mean-squared-error (RMSE) of ISPP when compared against final ephemeris were 660.65 m and 27.61 m, while the 3D RMSE of positioning were 1.612 m and 1.324 m for the first and second designs, respectively, lower than the accuracy of broadcast ephemeris. Three parameters are identified as factors affecting accuracy of ISPP, namely geometry of station distribution, nature of measurement used, and technique of orbit determination. Further research will be required to fully realize a functional regional GPS orbit.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":"48 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional GPS orbit determination using code-based pseudorange measurement with residual correction model\",\"authors\":\"Hong Sheng Lee, Wan Anom Wan Aris, Tajul Ariffin Musa, Ahmad Zuri Sha’ameri, Ooi Wei Han, Dong-Ha Lee, Mohammad Asrul Mustafar\",\"doi\":\"10.1515/jag-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study introduces the concept of regional GPS orbit determination, whereby GPS satellite positions are determined using GPS measurements from locally or regional distributed stations. The importance and characteristics of regional GPS orbit are briefly discussed. The technique used to determine the regional GPS satellite position is coined Inverse Single Point Positioning (ISPP). Code-based pseudorange is used and improved using residual correction model. Two designs of station distribution are selected in this study, which only cover stations in Malaysia and stations situated 8000 km from a reference point in Malaysia. The root-mean-squared-error (RMSE) of ISPP when compared against final ephemeris were 660.65 m and 27.61 m, while the 3D RMSE of positioning were 1.612 m and 1.324 m for the first and second designs, respectively, lower than the accuracy of broadcast ephemeris. Three parameters are identified as factors affecting accuracy of ISPP, namely geometry of station distribution, nature of measurement used, and technique of orbit determination. Further research will be required to fully realize a functional regional GPS orbit.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究引入了区域GPS定轨的概念,即利用局部或区域分布站的GPS测量值确定GPS卫星的位置。简要论述了区域GPS轨道的重要性和特点。用于确定区域GPS卫星位置的技术称为逆单点定位(ISPP)。采用基于代码的伪距,并利用残差校正模型进行改进。本研究选择了两种站点分布设计,仅覆盖马来西亚的站点和距离马来西亚参考点8000公里的站点。ISPP与最终星历的均方根误差(RMSE)分别为660.65 m和27.61 m,而定位的三维均方根误差(RMSE)分别为1.612 m和1.324 m,低于广播星历精度。确定了影响ISPP精度的三个因素,即站点分布的几何形状、使用的测量性质和定轨技术。要全面实现区域GPS轨道的功能,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regional GPS orbit determination using code-based pseudorange measurement with residual correction model
Abstract The study introduces the concept of regional GPS orbit determination, whereby GPS satellite positions are determined using GPS measurements from locally or regional distributed stations. The importance and characteristics of regional GPS orbit are briefly discussed. The technique used to determine the regional GPS satellite position is coined Inverse Single Point Positioning (ISPP). Code-based pseudorange is used and improved using residual correction model. Two designs of station distribution are selected in this study, which only cover stations in Malaysia and stations situated 8000 km from a reference point in Malaysia. The root-mean-squared-error (RMSE) of ISPP when compared against final ephemeris were 660.65 m and 27.61 m, while the 3D RMSE of positioning were 1.612 m and 1.324 m for the first and second designs, respectively, lower than the accuracy of broadcast ephemeris. Three parameters are identified as factors affecting accuracy of ISPP, namely geometry of station distribution, nature of measurement used, and technique of orbit determination. Further research will be required to fully realize a functional regional GPS orbit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Spatiotemporal postseismic due to the 2018 Lombok earthquake based on insar revealed multi mechanisms with long duration afterslip Differential synthetic aperture radar (SAR) interferometry for detection land subsidence in Derna City, Libya Improving the approximation quality of tensor product B-spline surfaces by local parameterization Advanced topographic-geodetic surveys and GNSS methodologies in urban planning Detection of GNSS ionospheric scintillations in multiple directions over a low latitude station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1