向列LCE板的非线性弯曲理论

Soren Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, Christian Palus
{"title":"向列LCE板的非线性弯曲理论","authors":"Soren Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, Christian Palus","doi":"10.1142/s0218202523500331","DOIUrl":null,"url":null,"abstract":"In this paper, we study an elastic bilayer plate composed of a nematic liquid crystal elastomer in the top layer and a nonlinearly elastic material in the bottom layer. While the bottom layer is assumed to be stress-free in the flat reference configuration, the top layer features an eigenstrain that depends on the local liquid crystal orientation. As a consequence, the plate shows non-flat deformations in equilibrium with a geometry that non-trivially depends on the relative thickness and shape of the plate, material parameters, boundary conditions for the deformation, and anchorings of the liquid crystal orientation. We focus on thin plates in the bending regime and derive a two-dimensional bending model that combines a nonlinear bending energy for the deformation, with a surface Oseen–Frank energy for the director field that describes the local orientation of the liquid crystal elastomer. Both energies are nonlinearly coupled by means of a spontaneous curvature term that effectively describes the nematic-elastic coupling. We rigorously derive this model as a [Formula: see text]-limit from three-dimensional, nonlinear elasticity. We also devise a new numerical algorithm to compute stationary points of the two-dimensional model. We conduct numerical experiments and present simulation results that illustrate the practical properties of the proposed scheme as well as the rich mechanical behavior of the system.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A nonlinear bending theory for nematic LCE plates\",\"authors\":\"Soren Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, Christian Palus\",\"doi\":\"10.1142/s0218202523500331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study an elastic bilayer plate composed of a nematic liquid crystal elastomer in the top layer and a nonlinearly elastic material in the bottom layer. While the bottom layer is assumed to be stress-free in the flat reference configuration, the top layer features an eigenstrain that depends on the local liquid crystal orientation. As a consequence, the plate shows non-flat deformations in equilibrium with a geometry that non-trivially depends on the relative thickness and shape of the plate, material parameters, boundary conditions for the deformation, and anchorings of the liquid crystal orientation. We focus on thin plates in the bending regime and derive a two-dimensional bending model that combines a nonlinear bending energy for the deformation, with a surface Oseen–Frank energy for the director field that describes the local orientation of the liquid crystal elastomer. Both energies are nonlinearly coupled by means of a spontaneous curvature term that effectively describes the nematic-elastic coupling. We rigorously derive this model as a [Formula: see text]-limit from three-dimensional, nonlinear elasticity. We also devise a new numerical algorithm to compute stationary points of the two-dimensional model. We conduct numerical experiments and present simulation results that illustrate the practical properties of the proposed scheme as well as the rich mechanical behavior of the system.\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202523500331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种由表层向列液晶弹性体和底层非线性弹性材料组成的弹性双层板。在平面参考结构中,假设底层是无应力的,而顶层的特征应变取决于局部液晶的取向。因此,平板显示出非平面的平衡变形,其几何形状非平凡地取决于平板的相对厚度和形状、材料参数、变形的边界条件和液晶取向的锚定。我们将重点放在弯曲状态下的薄板上,并推导出一个二维弯曲模型,该模型将非线性弯曲能量与描述液晶弹性体局部方向的指向场的表面osee - frank能量结合起来。这两种能量通过一个有效描述向列-弹性耦合的自发曲率项非线性耦合。我们从三维非线性弹性中严格推导出这个模型[公式:见文本]-极限。我们还设计了一种新的数值算法来计算二维模型的平稳点。我们进行了数值实验并给出了仿真结果,以说明所提出方案的实用特性以及系统的丰富力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nonlinear bending theory for nematic LCE plates
In this paper, we study an elastic bilayer plate composed of a nematic liquid crystal elastomer in the top layer and a nonlinearly elastic material in the bottom layer. While the bottom layer is assumed to be stress-free in the flat reference configuration, the top layer features an eigenstrain that depends on the local liquid crystal orientation. As a consequence, the plate shows non-flat deformations in equilibrium with a geometry that non-trivially depends on the relative thickness and shape of the plate, material parameters, boundary conditions for the deformation, and anchorings of the liquid crystal orientation. We focus on thin plates in the bending regime and derive a two-dimensional bending model that combines a nonlinear bending energy for the deformation, with a surface Oseen–Frank energy for the director field that describes the local orientation of the liquid crystal elastomer. Both energies are nonlinearly coupled by means of a spontaneous curvature term that effectively describes the nematic-elastic coupling. We rigorously derive this model as a [Formula: see text]-limit from three-dimensional, nonlinear elasticity. We also devise a new numerical algorithm to compute stationary points of the two-dimensional model. We conduct numerical experiments and present simulation results that illustrate the practical properties of the proposed scheme as well as the rich mechanical behavior of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-by-step solving virtual element schemes based on scalar auxiliary variable with relaxation for Allen-Cahn type gradient flows Computational and Analytical Studies of a New Nonlocal Phase-Field Crystal Model in Two Dimensions On the continuum limit of epidemiological models on graphs: convergence and approximation results A nodally bound-preserving finite element method for reaction–convection–diffusion equations Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1