{"title":"智能水网基础设施","authors":"Hossam A. Gabbar, Sultan Islam, Ahmed Ramadan","doi":"10.2166/wrd.2023.063","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a solution to convert the conventional water network into a smart water network (SWN). Scenarios are synthesized for water recycling inside buildings with less water consumed, minimizing the overall cost. Multiphysics modelling and simulation are conducted with Hysys and Ansys - Fluent in calculating the water flow quantity, pressure of the water network and velocity of water inside the pipe network. Four scenarios are synthesized and modelled for a selected mall building case study. These scenarios reduce the water consumption in the mall from 100% to 29.4%, with a cost-saving of more than 60%.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":"436 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart water network infrastructures\",\"authors\":\"Hossam A. Gabbar, Sultan Islam, Ahmed Ramadan\",\"doi\":\"10.2166/wrd.2023.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a solution to convert the conventional water network into a smart water network (SWN). Scenarios are synthesized for water recycling inside buildings with less water consumed, minimizing the overall cost. Multiphysics modelling and simulation are conducted with Hysys and Ansys - Fluent in calculating the water flow quantity, pressure of the water network and velocity of water inside the pipe network. Four scenarios are synthesized and modelled for a selected mall building case study. These scenarios reduce the water consumption in the mall from 100% to 29.4%, with a cost-saving of more than 60%.\",\"PeriodicalId\":34727,\"journal\":{\"name\":\"Water Reuse\",\"volume\":\"436 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Reuse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2023.063\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2023.063","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Abstract This paper presents a solution to convert the conventional water network into a smart water network (SWN). Scenarios are synthesized for water recycling inside buildings with less water consumed, minimizing the overall cost. Multiphysics modelling and simulation are conducted with Hysys and Ansys - Fluent in calculating the water flow quantity, pressure of the water network and velocity of water inside the pipe network. Four scenarios are synthesized and modelled for a selected mall building case study. These scenarios reduce the water consumption in the mall from 100% to 29.4%, with a cost-saving of more than 60%.