{"title":"用于交通预测的时空图注意力网络","authors":"","doi":"10.1080/19427867.2023.2261706","DOIUrl":null,"url":null,"abstract":"<div><div>The constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 9","pages":"Pages 978-988"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal graph attention networks for traffic prediction\",\"authors\":\"\",\"doi\":\"10.1080/19427867.2023.2261706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.</div></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 9\",\"pages\":\"Pages 978-988\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723002448\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002448","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Spatio-temporal graph attention networks for traffic prediction
The constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.