Nils Angliviel de La Beaumelle, Kornelis Blok, Jacques A. de Chalendar, Leon Clarke, Andrea N. Hahmann, Jonathan Huster, Gregory F. Nemet, Dhruv Suri, Thomas B. Wild, Inês M.L. Azevedo
{"title":"可再生电力的全球技术、经济和可行性潜力","authors":"Nils Angliviel de La Beaumelle, Kornelis Blok, Jacques A. de Chalendar, Leon Clarke, Andrea N. Hahmann, Jonathan Huster, Gregory F. Nemet, Dhruv Suri, Thomas B. Wild, Inês M.L. Azevedo","doi":"10.1146/annurev-environ-112321-091140","DOIUrl":null,"url":null,"abstract":"Renewable electricity generation will need to be rapidly scaled to address climate change and other environmental challenges. Doing so effectively will require an understanding of resource availability. We review estimates for renewable electricity of the global technical potential, defined as the amount of electricity that could be produced with current technologies when accounting for geographical and technical limitations as well as conversion efficiencies; economic potential, which also includes cost; and feasible potential, which accounts for societal and environmental constraints. We consider utility-scale and rooftop solar photovoltaics, concentrated solar power, onshore and offshore wind, hydropower, geothermal electricity, and ocean (wave, tidal, ocean thermal energy conversion, and salinity gradient energy) technologies. We find that the reported technical potential for each energy resource ranges over several orders of magnitude across and often within technologies. Therefore, we also discuss the main factors explaining why authors find such different results. According to this review and on the basis of the most robust studies, we find that technical potentials for utility-scale solar photovoltaic, concentrated solar power, onshore wind, and offshore wind are above 100 PWh/year. Hydropower, geothermal electricity, and ocean thermal energy conversion have technical potentials above 10 PWh/year. Rooftop solar photovoltaic, wave, and tidal have technical potentials above 1 PWh/year. Salinity gradient has a technical potential above 0.1 PWh/year. The literature assessing the global economic potential of renewables, which considers the cost of each renewable resource, shows that the economic potential is higher than current and near-future electricity demand. Fewer studies have calculated the global feasible potential, which considers societal and environmental constraints. While these ranges are useful for assessing the magnitude of available energy sources, they may omit challenges for large-scale renewable portfolios.","PeriodicalId":7982,"journal":{"name":"Annual Review of Environment and Resources","volume":"54 10","pages":"0"},"PeriodicalIF":15.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Technical, Economic, and Feasible Potential of Renewable Electricity\",\"authors\":\"Nils Angliviel de La Beaumelle, Kornelis Blok, Jacques A. de Chalendar, Leon Clarke, Andrea N. Hahmann, Jonathan Huster, Gregory F. Nemet, Dhruv Suri, Thomas B. Wild, Inês M.L. Azevedo\",\"doi\":\"10.1146/annurev-environ-112321-091140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable electricity generation will need to be rapidly scaled to address climate change and other environmental challenges. Doing so effectively will require an understanding of resource availability. We review estimates for renewable electricity of the global technical potential, defined as the amount of electricity that could be produced with current technologies when accounting for geographical and technical limitations as well as conversion efficiencies; economic potential, which also includes cost; and feasible potential, which accounts for societal and environmental constraints. We consider utility-scale and rooftop solar photovoltaics, concentrated solar power, onshore and offshore wind, hydropower, geothermal electricity, and ocean (wave, tidal, ocean thermal energy conversion, and salinity gradient energy) technologies. We find that the reported technical potential for each energy resource ranges over several orders of magnitude across and often within technologies. Therefore, we also discuss the main factors explaining why authors find such different results. According to this review and on the basis of the most robust studies, we find that technical potentials for utility-scale solar photovoltaic, concentrated solar power, onshore wind, and offshore wind are above 100 PWh/year. Hydropower, geothermal electricity, and ocean thermal energy conversion have technical potentials above 10 PWh/year. Rooftop solar photovoltaic, wave, and tidal have technical potentials above 1 PWh/year. Salinity gradient has a technical potential above 0.1 PWh/year. The literature assessing the global economic potential of renewables, which considers the cost of each renewable resource, shows that the economic potential is higher than current and near-future electricity demand. Fewer studies have calculated the global feasible potential, which considers societal and environmental constraints. While these ranges are useful for assessing the magnitude of available energy sources, they may omit challenges for large-scale renewable portfolios.\",\"PeriodicalId\":7982,\"journal\":{\"name\":\"Annual Review of Environment and Resources\",\"volume\":\"54 10\",\"pages\":\"0\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Environment and Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-environ-112321-091140\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Environment and Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-environ-112321-091140","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Global Technical, Economic, and Feasible Potential of Renewable Electricity
Renewable electricity generation will need to be rapidly scaled to address climate change and other environmental challenges. Doing so effectively will require an understanding of resource availability. We review estimates for renewable electricity of the global technical potential, defined as the amount of electricity that could be produced with current technologies when accounting for geographical and technical limitations as well as conversion efficiencies; economic potential, which also includes cost; and feasible potential, which accounts for societal and environmental constraints. We consider utility-scale and rooftop solar photovoltaics, concentrated solar power, onshore and offshore wind, hydropower, geothermal electricity, and ocean (wave, tidal, ocean thermal energy conversion, and salinity gradient energy) technologies. We find that the reported technical potential for each energy resource ranges over several orders of magnitude across and often within technologies. Therefore, we also discuss the main factors explaining why authors find such different results. According to this review and on the basis of the most robust studies, we find that technical potentials for utility-scale solar photovoltaic, concentrated solar power, onshore wind, and offshore wind are above 100 PWh/year. Hydropower, geothermal electricity, and ocean thermal energy conversion have technical potentials above 10 PWh/year. Rooftop solar photovoltaic, wave, and tidal have technical potentials above 1 PWh/year. Salinity gradient has a technical potential above 0.1 PWh/year. The literature assessing the global economic potential of renewables, which considers the cost of each renewable resource, shows that the economic potential is higher than current and near-future electricity demand. Fewer studies have calculated the global feasible potential, which considers societal and environmental constraints. While these ranges are useful for assessing the magnitude of available energy sources, they may omit challenges for large-scale renewable portfolios.
期刊介绍:
The Annual Review of Environment and Resources, established in 1976, offers authoritative reviews on key environmental science and engineering topics. It covers various subjects, including ecology, conservation science, water and energy resources, atmosphere, oceans, climate change, agriculture, living resources, and the human dimensions of resource use and global change. The journal's recent transition from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license, enhances the dissemination of knowledge in the field.