{"title":"广义Werner态中双量子比特纠缠的单量子比特测量","authors":"Salini Rajeev, Mayukh Lahiri","doi":"10.1103/physreva.108.052410","DOIUrl":null,"url":null,"abstract":"Conventional methods of measuring entanglement in a two-qubit photonic mixed state require detection of both qubits. We generalize a recently introduced method which does not require detection of both qubits, by extending it to cover a wider class of entangled states. Specifically, we present a detailed theory that shows how to measure entanglement in a family of two-qubit mixed states, obtained by generalizing Werner states, without detecting one of the qubits. Our method is interferometric and does not require any coincidence measurement or postselection. We also perform a quantitative analysis of anticipated experimental imperfections. We show that the method is resistant to a decrease in the interference visibility resulting from such imperfections.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"51 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-qubit measurement of two-qubit entanglement in generalized Werner states\",\"authors\":\"Salini Rajeev, Mayukh Lahiri\",\"doi\":\"10.1103/physreva.108.052410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional methods of measuring entanglement in a two-qubit photonic mixed state require detection of both qubits. We generalize a recently introduced method which does not require detection of both qubits, by extending it to cover a wider class of entangled states. Specifically, we present a detailed theory that shows how to measure entanglement in a family of two-qubit mixed states, obtained by generalizing Werner states, without detecting one of the qubits. Our method is interferometric and does not require any coincidence measurement or postselection. We also perform a quantitative analysis of anticipated experimental imperfections. We show that the method is resistant to a decrease in the interference visibility resulting from such imperfections.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":\"51 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.108.052410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.052410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-qubit measurement of two-qubit entanglement in generalized Werner states
Conventional methods of measuring entanglement in a two-qubit photonic mixed state require detection of both qubits. We generalize a recently introduced method which does not require detection of both qubits, by extending it to cover a wider class of entangled states. Specifically, we present a detailed theory that shows how to measure entanglement in a family of two-qubit mixed states, obtained by generalizing Werner states, without detecting one of the qubits. Our method is interferometric and does not require any coincidence measurement or postselection. We also perform a quantitative analysis of anticipated experimental imperfections. We show that the method is resistant to a decrease in the interference visibility resulting from such imperfections.