基于双四元数的SLERP MPC机器人轮椅安全自驾车局部控制器

IF 2.9 Q2 ROBOTICS Robotics Pub Date : 2023-11-13 DOI:10.3390/robotics12060153
Daifeng Wang, Wenjing Cao, Atsuo Takanishi
{"title":"基于双四元数的SLERP MPC机器人轮椅安全自驾车局部控制器","authors":"Daifeng Wang, Wenjing Cao, Atsuo Takanishi","doi":"10.3390/robotics12060153","DOIUrl":null,"url":null,"abstract":"In this work, the motion control of a robotic wheelchair to achieve safe and intelligent movement in an unknown scenario is proposed. The primary objective is to develop a comprehensive framework for a robotic wheelchair that combines a global path planner and a model predictive control (MPC) local controller. The A* algorithm is employed to generate a global path. To ensure safe and directional motion for the wheelchair user, an MPC local controller is implemented taking into account the via points generated by an approach combined with dual quaternions and spherical linear interpolation (SLERP). Dual quaternions are utilized for their simultaneous handling of rotation and translation, while SLERP enables smooth and continuous rotation interpolation by generating intermediate orientations between two specified orientations. The integration of these two methods optimizes navigation performance. The system is built on the Robot Operating System (ROS), with an electric wheelchair equipped with 3D-LiDAR serving as the hardware foundation. The experimental results reveal the effectiveness of the proposed method and demonstrate the ability of the robotic wheelchair to move safely from the initial position to the destination. This work contributes to the development of effective motion control for robotic wheelchairs, focusing on safety and improving the user experience when navigating in unknown environments.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"7 9","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Quaternion-Based SLERP MPC Local Controller for Safe Self-Driving of Robotic Wheelchairs\",\"authors\":\"Daifeng Wang, Wenjing Cao, Atsuo Takanishi\",\"doi\":\"10.3390/robotics12060153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the motion control of a robotic wheelchair to achieve safe and intelligent movement in an unknown scenario is proposed. The primary objective is to develop a comprehensive framework for a robotic wheelchair that combines a global path planner and a model predictive control (MPC) local controller. The A* algorithm is employed to generate a global path. To ensure safe and directional motion for the wheelchair user, an MPC local controller is implemented taking into account the via points generated by an approach combined with dual quaternions and spherical linear interpolation (SLERP). Dual quaternions are utilized for their simultaneous handling of rotation and translation, while SLERP enables smooth and continuous rotation interpolation by generating intermediate orientations between two specified orientations. The integration of these two methods optimizes navigation performance. The system is built on the Robot Operating System (ROS), with an electric wheelchair equipped with 3D-LiDAR serving as the hardware foundation. The experimental results reveal the effectiveness of the proposed method and demonstrate the ability of the robotic wheelchair to move safely from the initial position to the destination. This work contributes to the development of effective motion control for robotic wheelchairs, focusing on safety and improving the user experience when navigating in unknown environments.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"7 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,提出了机器人轮椅的运动控制,以实现未知场景下的安全智能运动。主要目标是为机器人轮椅开发一个综合框架,该框架结合了全局路径规划器和模型预测控制(MPC)局部控制器。采用A*算法生成全局路径。为了保证轮椅使用者的安全和定向运动,采用对偶四元数和球面线性插值(SLERP)相结合的方法实现了MPC局部控制器。对偶四元数用于同时处理旋转和平移,而SLERP通过在两个指定方向之间生成中间方向来实现平滑和连续的旋转插值。这两种方法的结合优化了导航性能。该系统建立在机器人操作系统(ROS)之上,以配备3D-LiDAR的电动轮椅作为硬件基础。实验结果表明了该方法的有效性,并验证了机器人轮椅从初始位置安全移动到目的地的能力。这项工作有助于开发有效的机器人轮椅运动控制,重点是在未知环境中导航时的安全性和改善用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-Quaternion-Based SLERP MPC Local Controller for Safe Self-Driving of Robotic Wheelchairs
In this work, the motion control of a robotic wheelchair to achieve safe and intelligent movement in an unknown scenario is proposed. The primary objective is to develop a comprehensive framework for a robotic wheelchair that combines a global path planner and a model predictive control (MPC) local controller. The A* algorithm is employed to generate a global path. To ensure safe and directional motion for the wheelchair user, an MPC local controller is implemented taking into account the via points generated by an approach combined with dual quaternions and spherical linear interpolation (SLERP). Dual quaternions are utilized for their simultaneous handling of rotation and translation, while SLERP enables smooth and continuous rotation interpolation by generating intermediate orientations between two specified orientations. The integration of these two methods optimizes navigation performance. The system is built on the Robot Operating System (ROS), with an electric wheelchair equipped with 3D-LiDAR serving as the hardware foundation. The experimental results reveal the effectiveness of the proposed method and demonstrate the ability of the robotic wheelchair to move safely from the initial position to the destination. This work contributes to the development of effective motion control for robotic wheelchairs, focusing on safety and improving the user experience when navigating in unknown environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
期刊最新文献
Evaluation of a Voice-Enabled Autonomous Camera Control System for the da Vinci Surgical Robot NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot Probability-Based Strategy for a Football Multi-Agent Autonomous Robot System An Enhanced Multi-Sensor Simultaneous Localization and Mapping (SLAM) Framework with Coarse-to-Fine Loop Closure Detection Based on a Tightly Coupled Error State Iterative Kalman Filter Playing Checkers with an Intelligent and Collaborative Robotic System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1