Abigail Batley, Richard Glithro, Bryce Dyer, Philip Sewell
{"title":"3D打印碳纤维材料和工艺的拉伸强度和可重复性评估","authors":"Abigail Batley, Richard Glithro, Bryce Dyer, Philip Sewell","doi":"10.1089/3dp.2022.0262","DOIUrl":null,"url":null,"abstract":"As additive manufacturing (AM) with composite materials becomes more widely used in industry to create high-strength components, it is vital to have quantified material properties that provide designers and engineers accurate data to decide which materials are suitable for their applications. This study replicates the build processes and tensile tests undertaken by AM material manufacturers to compare tensile strengths achieved with those stated on the manufacturers' data sheets. These are important data to research and analyze as either it will corroborate properties given by the manufacturers and provide confidence in the values provided or it will show that the manufacturer's values cannot always be achieved and that designers and engineers must be more critical about the values manufacturers are providing when using the materials in their own applications. Tensile tests were performed on additively manufactured specimens that had been built using the same parameters that were used during the manufacturers' testing procedures. Digital image correlation was used to accurately measure strain in the test samples, enabling material properties to be determined. Microscopy analysis enabled the visual inspection of the print quality, the identification of defects, and the determination of volume fraction with the samples. The results show inconsistencies between the tensile strength results achieved during this study and the tensile strengths stated by the manufacturers. The results show that two materials exceeded the expected values and one material did not reach the expected value. Analysis of the 3D printed specimens shows that poor fiber–matrix wetting, large voids, and weak interfacial bonding were accountable for the lower-than-expected tensile strength results. While good print quality, low void percentage, proper fiber–matrix wetting, and good control measures were accountable for results that exceeded expectation. These results show that designers and engineers cannot solely rely on material data sheets to establish the mechanical properties of their 3D printed components.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"44 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Tensile Strength and Repeatability of 3D Printed Carbon Fiber Materials and Processes\",\"authors\":\"Abigail Batley, Richard Glithro, Bryce Dyer, Philip Sewell\",\"doi\":\"10.1089/3dp.2022.0262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As additive manufacturing (AM) with composite materials becomes more widely used in industry to create high-strength components, it is vital to have quantified material properties that provide designers and engineers accurate data to decide which materials are suitable for their applications. This study replicates the build processes and tensile tests undertaken by AM material manufacturers to compare tensile strengths achieved with those stated on the manufacturers' data sheets. These are important data to research and analyze as either it will corroborate properties given by the manufacturers and provide confidence in the values provided or it will show that the manufacturer's values cannot always be achieved and that designers and engineers must be more critical about the values manufacturers are providing when using the materials in their own applications. Tensile tests were performed on additively manufactured specimens that had been built using the same parameters that were used during the manufacturers' testing procedures. Digital image correlation was used to accurately measure strain in the test samples, enabling material properties to be determined. Microscopy analysis enabled the visual inspection of the print quality, the identification of defects, and the determination of volume fraction with the samples. The results show inconsistencies between the tensile strength results achieved during this study and the tensile strengths stated by the manufacturers. The results show that two materials exceeded the expected values and one material did not reach the expected value. Analysis of the 3D printed specimens shows that poor fiber–matrix wetting, large voids, and weak interfacial bonding were accountable for the lower-than-expected tensile strength results. While good print quality, low void percentage, proper fiber–matrix wetting, and good control measures were accountable for results that exceeded expectation. These results show that designers and engineers cannot solely rely on material data sheets to establish the mechanical properties of their 3D printed components.\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0262\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0262","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Evaluation of Tensile Strength and Repeatability of 3D Printed Carbon Fiber Materials and Processes
As additive manufacturing (AM) with composite materials becomes more widely used in industry to create high-strength components, it is vital to have quantified material properties that provide designers and engineers accurate data to decide which materials are suitable for their applications. This study replicates the build processes and tensile tests undertaken by AM material manufacturers to compare tensile strengths achieved with those stated on the manufacturers' data sheets. These are important data to research and analyze as either it will corroborate properties given by the manufacturers and provide confidence in the values provided or it will show that the manufacturer's values cannot always be achieved and that designers and engineers must be more critical about the values manufacturers are providing when using the materials in their own applications. Tensile tests were performed on additively manufactured specimens that had been built using the same parameters that were used during the manufacturers' testing procedures. Digital image correlation was used to accurately measure strain in the test samples, enabling material properties to be determined. Microscopy analysis enabled the visual inspection of the print quality, the identification of defects, and the determination of volume fraction with the samples. The results show inconsistencies between the tensile strength results achieved during this study and the tensile strengths stated by the manufacturers. The results show that two materials exceeded the expected values and one material did not reach the expected value. Analysis of the 3D printed specimens shows that poor fiber–matrix wetting, large voids, and weak interfacial bonding were accountable for the lower-than-expected tensile strength results. While good print quality, low void percentage, proper fiber–matrix wetting, and good control measures were accountable for results that exceeded expectation. These results show that designers and engineers cannot solely rely on material data sheets to establish the mechanical properties of their 3D printed components.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.