在市场份额数据为零的情况下估计差异化产品的需求

IF 1.9 3区 经济学 Q2 ECONOMICS Quantitative Economics Pub Date : 2023-01-01 DOI:10.3982/qe1593
Amit Gandhi, Zhentong Lu, Xiaoxia Shi
{"title":"在市场份额数据为零的情况下估计差异化产品的需求","authors":"Amit Gandhi, Zhentong Lu, Xiaoxia Shi","doi":"10.3982/qe1593","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new approach to estimating differentiated product demand systems that allows for products with zero sales in the data. Zeroes in demand are a common problem in differentiated product markets, but fall outside the scope of existing demand estimation techniques. We show that with a lower bound imposed on the expected sales quantities, we can construct upper and lower bounds for the conditional expectation of the inverse demand. These bounds can be translated into moment inequalities that are shown to yield consistent and asymptotically normal point estimators for demand parameters under natural conditions. In Monte Carlo simulations, we demonstrate that the new approach works well even when the fraction of zeroes is as high as 95%. We apply our estimator to supermarket scanner data and find that correcting the bias caused by zeroes has important empirical implications, for example, price elasticities become twice as large when zeroes are properly controlled.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"207 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating demand for differentiated products with zeroes in market share data\",\"authors\":\"Amit Gandhi, Zhentong Lu, Xiaoxia Shi\",\"doi\":\"10.3982/qe1593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new approach to estimating differentiated product demand systems that allows for products with zero sales in the data. Zeroes in demand are a common problem in differentiated product markets, but fall outside the scope of existing demand estimation techniques. We show that with a lower bound imposed on the expected sales quantities, we can construct upper and lower bounds for the conditional expectation of the inverse demand. These bounds can be translated into moment inequalities that are shown to yield consistent and asymptotically normal point estimators for demand parameters under natural conditions. In Monte Carlo simulations, we demonstrate that the new approach works well even when the fraction of zeroes is as high as 95%. We apply our estimator to supermarket scanner data and find that correcting the bias caused by zeroes has important empirical implications, for example, price elasticities become twice as large when zeroes are properly controlled.\",\"PeriodicalId\":46811,\"journal\":{\"name\":\"Quantitative Economics\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3982/qe1593\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3982/qe1593","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们引入了一种新的方法来估计差异化的产品需求系统,该系统允许数据中零销售的产品。需求零是差异化产品市场中常见的问题,但超出了现有需求估计技术的范围。我们证明了期望销售量的下界,我们可以构造逆需求条件期望的上界和下界。这些界限可以转化为力矩不等式,在自然条件下显示出需求参数的一致和渐近正态点估计。在蒙特卡罗模拟中,我们证明了新方法即使在零的比例高达95%时也能很好地工作。我们将我们的估计器应用于超市扫描仪数据,发现纠正由零引起的偏差具有重要的经验意义,例如,当零得到适当控制时,价格弹性会变得两倍大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating demand for differentiated products with zeroes in market share data
In this paper, we introduce a new approach to estimating differentiated product demand systems that allows for products with zero sales in the data. Zeroes in demand are a common problem in differentiated product markets, but fall outside the scope of existing demand estimation techniques. We show that with a lower bound imposed on the expected sales quantities, we can construct upper and lower bounds for the conditional expectation of the inverse demand. These bounds can be translated into moment inequalities that are shown to yield consistent and asymptotically normal point estimators for demand parameters under natural conditions. In Monte Carlo simulations, we demonstrate that the new approach works well even when the fraction of zeroes is as high as 95%. We apply our estimator to supermarket scanner data and find that correcting the bias caused by zeroes has important empirical implications, for example, price elasticities become twice as large when zeroes are properly controlled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
期刊最新文献
Geometric methods for finite rational inattention Measuring trust in institutions and its causal effect A robust permutation test for subvector inference in linear regressions Difficulties in testing for capital overaccumulation Bootstrapping Laplace transforms of volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1