None Wenxing Zhou, None Yujie Qi, None Mengjun Liu, None Chengpang Hsiao, None Lin Wang
{"title":"在侧切动作中,足部击打方式和切割角度对膝关节运动学和动力学的影响","authors":"None Wenxing Zhou, None Yujie Qi, None Mengjun Liu, None Chengpang Hsiao, None Lin Wang","doi":"10.37190/abb-02192-2023-02","DOIUrl":null,"url":null,"abstract":"Purpose Cutting maneuvers are important actions in multidirectional sports but associated with noncontact anterior cruciate ligament (ACL) injuries. This study aimed to investigate the effect of different foot strike patterns and cutting angles on knee kinematics and kinetics. Methods Twenty healthy male team sports athletes performed cuts with maximum speed at three angles (45°, 90°, and 135°) with different foot strike patterns (rearfoot strike [RFS] and forefoot strike [FFS]). A three-dimensional motion capture system combined with a force plate was used to collect makers trajectory and ground reaction force (GRF). Vertical GRF, and knee joint angles and moments were compared among these cutting tasks. Results Regardless of foot strike patterns, increased knee flexion angle, knee valgus moment, and knee internal rotation moment were observed during cutting to sharper angles (p < 0.001). At 90° and 135°, the FFS condition remained in a varus position and showed lower knee flexion moment than the RFS condition (p ≤ 0.004). However, no significant differences in knee kinematic and kinetic variables were found between foot strike patterns during cutting to 45°. Conclusions These findings suggest that sharper cutting angles potentially increase the risk of ACL injury. Compared with the RFS pattern, the FFS pattern induces a slight knee varus angle and a lower knee flexion moment at sharper angles, which might further reduce the load placed on the knee.","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"23 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of foot strike patterns and cutting angles on knee kinematics and kinetics during side-cutting maneuvers\",\"authors\":\"None Wenxing Zhou, None Yujie Qi, None Mengjun Liu, None Chengpang Hsiao, None Lin Wang\",\"doi\":\"10.37190/abb-02192-2023-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Cutting maneuvers are important actions in multidirectional sports but associated with noncontact anterior cruciate ligament (ACL) injuries. This study aimed to investigate the effect of different foot strike patterns and cutting angles on knee kinematics and kinetics. Methods Twenty healthy male team sports athletes performed cuts with maximum speed at three angles (45°, 90°, and 135°) with different foot strike patterns (rearfoot strike [RFS] and forefoot strike [FFS]). A three-dimensional motion capture system combined with a force plate was used to collect makers trajectory and ground reaction force (GRF). Vertical GRF, and knee joint angles and moments were compared among these cutting tasks. Results Regardless of foot strike patterns, increased knee flexion angle, knee valgus moment, and knee internal rotation moment were observed during cutting to sharper angles (p < 0.001). At 90° and 135°, the FFS condition remained in a varus position and showed lower knee flexion moment than the RFS condition (p ≤ 0.004). However, no significant differences in knee kinematic and kinetic variables were found between foot strike patterns during cutting to 45°. Conclusions These findings suggest that sharper cutting angles potentially increase the risk of ACL injury. Compared with the RFS pattern, the FFS pattern induces a slight knee varus angle and a lower knee flexion moment at sharper angles, which might further reduce the load placed on the knee.\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/abb-02192-2023-02\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02192-2023-02","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Effect of foot strike patterns and cutting angles on knee kinematics and kinetics during side-cutting maneuvers
Purpose Cutting maneuvers are important actions in multidirectional sports but associated with noncontact anterior cruciate ligament (ACL) injuries. This study aimed to investigate the effect of different foot strike patterns and cutting angles on knee kinematics and kinetics. Methods Twenty healthy male team sports athletes performed cuts with maximum speed at three angles (45°, 90°, and 135°) with different foot strike patterns (rearfoot strike [RFS] and forefoot strike [FFS]). A three-dimensional motion capture system combined with a force plate was used to collect makers trajectory and ground reaction force (GRF). Vertical GRF, and knee joint angles and moments were compared among these cutting tasks. Results Regardless of foot strike patterns, increased knee flexion angle, knee valgus moment, and knee internal rotation moment were observed during cutting to sharper angles (p < 0.001). At 90° and 135°, the FFS condition remained in a varus position and showed lower knee flexion moment than the RFS condition (p ≤ 0.004). However, no significant differences in knee kinematic and kinetic variables were found between foot strike patterns during cutting to 45°. Conclusions These findings suggest that sharper cutting angles potentially increase the risk of ACL injury. Compared with the RFS pattern, the FFS pattern induces a slight knee varus angle and a lower knee flexion moment at sharper angles, which might further reduce the load placed on the knee.
期刊介绍:
Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background.
Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to:
Tissue Biomechanics,
Orthopedic Biomechanics,
Biomaterials,
Sport Biomechanics.