静载荷和流体流动条件下小梁骨和多孔支架之间力学反应的评估:有限元方法

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal for Multiscale Computational Engineering Pub Date : 2023-01-01 DOI:10.1615/intjmultcompeng.2023049206
Parthasarathi Samanta, Surajit Kundu, Abhisek Gupta, Masud Rana, Nitesh Mondal, Amit Roy Chowdhury
{"title":"静载荷和流体流动条件下小梁骨和多孔支架之间力学反应的评估:有限元方法","authors":"Parthasarathi Samanta, Surajit Kundu, Abhisek Gupta, Masud Rana, Nitesh Mondal, Amit Roy Chowdhury","doi":"10.1615/intjmultcompeng.2023049206","DOIUrl":null,"url":null,"abstract":"3D Porous scaffold is one of the standard and evocative approaches to creating a favorable biomechanical environment in tissue engineering for tissue regeneration and repair. The architectural design parameters (e.g., pore-shape, size, distribution and interconnectivity; permeability; specific surface area etc.) of the porous model have significant influence on their mechano-biological behavior. Flow dynamics of fluid is a very vital phenomenon in understanding how the blood flows through the porous structure which is the responsibility of the biological behavior of the cell. As permeability and porosity are the essential parameters of scaffolds architecture, in this study, von-Mises stress, deformation, wall shear stress (WSS) and the pressure drop across the model have been investigated. Using computational fluid dynamics, geometrical, static structure and WSS are compared with the natural bone with different porosity to identify which architectural design is close to the bone.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of mechanical responses between trabecular bones and porous scaffolds under static loading and fluid flow conditions: A finite element approach\",\"authors\":\"Parthasarathi Samanta, Surajit Kundu, Abhisek Gupta, Masud Rana, Nitesh Mondal, Amit Roy Chowdhury\",\"doi\":\"10.1615/intjmultcompeng.2023049206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D Porous scaffold is one of the standard and evocative approaches to creating a favorable biomechanical environment in tissue engineering for tissue regeneration and repair. The architectural design parameters (e.g., pore-shape, size, distribution and interconnectivity; permeability; specific surface area etc.) of the porous model have significant influence on their mechano-biological behavior. Flow dynamics of fluid is a very vital phenomenon in understanding how the blood flows through the porous structure which is the responsibility of the biological behavior of the cell. As permeability and porosity are the essential parameters of scaffolds architecture, in this study, von-Mises stress, deformation, wall shear stress (WSS) and the pressure drop across the model have been investigated. Using computational fluid dynamics, geometrical, static structure and WSS are compared with the natural bone with different porosity to identify which architectural design is close to the bone.\",\"PeriodicalId\":50350,\"journal\":{\"name\":\"International Journal for Multiscale Computational Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Multiscale Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmultcompeng.2023049206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023049206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维多孔支架是在组织工程中为组织再生和修复创造良好生物力学环境的标准和令人回味的方法之一。建筑设计参数(例如孔隙形状、大小、分布及连通性);渗透率;比表面积等)对多孔模型的力学生物学行为有显著影响。流体的流动动力学是理解血液如何在多孔结构中流动的一个非常重要的现象,多孔结构是细胞生物学行为的责任。由于渗透率和孔隙度是支架结构的重要参数,因此本研究对模型的von-Mises应力、变形、壁面剪切应力(WSS)和压降进行了研究。利用计算流体力学,将几何、静力结构和WSS与不同孔隙率的天然骨进行比较,以确定哪种建筑设计接近骨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of mechanical responses between trabecular bones and porous scaffolds under static loading and fluid flow conditions: A finite element approach
3D Porous scaffold is one of the standard and evocative approaches to creating a favorable biomechanical environment in tissue engineering for tissue regeneration and repair. The architectural design parameters (e.g., pore-shape, size, distribution and interconnectivity; permeability; specific surface area etc.) of the porous model have significant influence on their mechano-biological behavior. Flow dynamics of fluid is a very vital phenomenon in understanding how the blood flows through the porous structure which is the responsibility of the biological behavior of the cell. As permeability and porosity are the essential parameters of scaffolds architecture, in this study, von-Mises stress, deformation, wall shear stress (WSS) and the pressure drop across the model have been investigated. Using computational fluid dynamics, geometrical, static structure and WSS are compared with the natural bone with different porosity to identify which architectural design is close to the bone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
44
审稿时长
>12 weeks
期刊介绍: The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.
期刊最新文献
A grain-based discretized virtual internal bond (GB-DVIB) model for modeling micro-cracking of granular rock A smoothed natural neighbour Galerkin method for flexoelectric solids Bird Squirrel Optimization with Deep Recurrent Neural Network forProstate Cancer Detection Machine-learning-based asymptotic homogenisation and localisation of spatially varying multiscale configurations made of materials with nonlinear stress-strain relationships Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1