利用 DNN-SNN 协同学习实现 Loihi 芯片 5G 系统中的可持续符号检测

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-10-13 DOI:10.1109/TSUSC.2023.3324339
Shiya Liu;Yibin Liang;Yang Yi
{"title":"利用 DNN-SNN 协同学习实现 Loihi 芯片 5G 系统中的可持续符号检测","authors":"Shiya Liu;Yibin Liang;Yang Yi","doi":"10.1109/TSUSC.2023.3324339","DOIUrl":null,"url":null,"abstract":"Performing symbol detection for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is challenging and resource-consuming. In this paper, we present a liquid state machine (LSM), a type of reservoir computing based on spiking neural networks (SNNs), to achieve energy-efficient and sustainable symbol detection on the Loihi chip for MIMO-OFDM systems. SNNs are more biological-plausible and energy-efficient than conventional deep neural networks (DNN) but have lower performance in terms of accuracy. To enhance the accuracy of SNNs, we propose a knowledge distillation training algorithm called DNN-SNN co-learning, which employs a bi-directional learning path between a DNN and an SNN. Specifically, the knowledge from the output and intermediate layer of the DNN is transferred to the SNN, and we exploit a decoder to convert the spikes in the intermediate layers of an SNN into real numbers to enable communication between the DNN and the SNN. Through the bi-directional learning path, the SNN can mimic the behavior of the DNN by learning the knowledge from the DNN. Conversely, the DNN can better adapt itself to the SNN by using the knowledge from the SNN. We introduce a new loss function to enable knowledge distillation on regression tasks. Our LSM is implemented on Intel's Loihi neuromorphic chip, a specialized hardware platform for SNN models. The experimental results on symbol detection in MIMO-OFDM systems demonstrate that our LSM on the Loihi chip is more precise than conventional symbol detection algorithms. Also, the model consumes approximately 6 times less energy per sample than other quantized DNN-based models with comparable accuracy.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"170-181"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNN-SNN Co-Learning for Sustainable Symbol Detection in 5G Systems on Loihi Chip\",\"authors\":\"Shiya Liu;Yibin Liang;Yang Yi\",\"doi\":\"10.1109/TSUSC.2023.3324339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing symbol detection for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is challenging and resource-consuming. In this paper, we present a liquid state machine (LSM), a type of reservoir computing based on spiking neural networks (SNNs), to achieve energy-efficient and sustainable symbol detection on the Loihi chip for MIMO-OFDM systems. SNNs are more biological-plausible and energy-efficient than conventional deep neural networks (DNN) but have lower performance in terms of accuracy. To enhance the accuracy of SNNs, we propose a knowledge distillation training algorithm called DNN-SNN co-learning, which employs a bi-directional learning path between a DNN and an SNN. Specifically, the knowledge from the output and intermediate layer of the DNN is transferred to the SNN, and we exploit a decoder to convert the spikes in the intermediate layers of an SNN into real numbers to enable communication between the DNN and the SNN. Through the bi-directional learning path, the SNN can mimic the behavior of the DNN by learning the knowledge from the DNN. Conversely, the DNN can better adapt itself to the SNN by using the knowledge from the SNN. We introduce a new loss function to enable knowledge distillation on regression tasks. Our LSM is implemented on Intel's Loihi neuromorphic chip, a specialized hardware platform for SNN models. The experimental results on symbol detection in MIMO-OFDM systems demonstrate that our LSM on the Loihi chip is more precise than conventional symbol detection algorithms. Also, the model consumes approximately 6 times less energy per sample than other quantized DNN-based models with comparable accuracy.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 2\",\"pages\":\"170-181\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285018/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10285018/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在多输入多输出正交频分复用(MIMO-OFDM)系统中进行符号检测既具有挑战性又耗费资源。在本文中,我们提出了一种基于尖峰神经网络(SNN)的存储计算--液态机(LSM),以在 Loihi 芯片上实现 MIMO-OFDM 系统的高能效和可持续符号检测。与传统的深度神经网络(DNN)相比,SNN更具生物合理性和能效,但在准确性方面性能较低。为了提高 SNN 的准确性,我们提出了一种称为 DNN-SNN 协同学习的知识提炼训练算法,它采用了 DNN 和 SNN 之间的双向学习路径。具体来说,我们将 DNN 输出层和中间层的知识转移到 SNN,并利用解码器将 SNN 中间层的尖峰转换为实数,从而实现 DNN 和 SNN 之间的通信。通过双向学习路径,SNN 可以通过学习 DNN 的知识来模仿 DNN 的行为。反之,DNN 可以通过使用 SNN 的知识更好地适应 SNN。我们引入了一个新的损失函数,以实现回归任务的知识提炼。我们的 LSM 是在英特尔的 Loihi 神经形态芯片上实现的,该芯片是 SNN 模型的专用硬件平台。MIMO-OFDM 系统中符号检测的实验结果表明,Loihi 芯片上的 LSM 比传统符号检测算法更加精确。此外,与精度相当的其他基于 DNN 的量化模型相比,该模型每次采样消耗的能量大约少 6 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNN-SNN Co-Learning for Sustainable Symbol Detection in 5G Systems on Loihi Chip
Performing symbol detection for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is challenging and resource-consuming. In this paper, we present a liquid state machine (LSM), a type of reservoir computing based on spiking neural networks (SNNs), to achieve energy-efficient and sustainable symbol detection on the Loihi chip for MIMO-OFDM systems. SNNs are more biological-plausible and energy-efficient than conventional deep neural networks (DNN) but have lower performance in terms of accuracy. To enhance the accuracy of SNNs, we propose a knowledge distillation training algorithm called DNN-SNN co-learning, which employs a bi-directional learning path between a DNN and an SNN. Specifically, the knowledge from the output and intermediate layer of the DNN is transferred to the SNN, and we exploit a decoder to convert the spikes in the intermediate layers of an SNN into real numbers to enable communication between the DNN and the SNN. Through the bi-directional learning path, the SNN can mimic the behavior of the DNN by learning the knowledge from the DNN. Conversely, the DNN can better adapt itself to the SNN by using the knowledge from the SNN. We introduce a new loss function to enable knowledge distillation on regression tasks. Our LSM is implemented on Intel's Loihi neuromorphic chip, a specialized hardware platform for SNN models. The experimental results on symbol detection in MIMO-OFDM systems demonstrate that our LSM on the Loihi chip is more precise than conventional symbol detection algorithms. Also, the model consumes approximately 6 times less energy per sample than other quantized DNN-based models with comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1