芳基氧乙酰硫脲抑制<i>小环切菌</i>的构效关系胚根伸长

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Journal of Pesticide Science Pub Date : 2023-01-01 DOI:10.1584/jpestics.d23-034
Atsushi Okazawa, Shizuki Noda, Yusuke Mimura, Kotaro Fujino, Takatoshi Wakabayashi, Daisaku Ohta, Yukihiro Sugimoto, Motohiro Sonoda
{"title":"芳基氧乙酰硫脲抑制&lt;i&gt;小环切菌&lt;/i&gt的构效关系胚根伸长","authors":"Atsushi Okazawa, Shizuki Noda, Yusuke Mimura, Kotaro Fujino, Takatoshi Wakabayashi, Daisaku Ohta, Yukihiro Sugimoto, Motohiro Sonoda","doi":"10.1584/jpestics.d23-034","DOIUrl":null,"url":null,"abstract":"Orobanchaceae root parasitic weeds cause significant damage to agriculture and become threats to global food security. Integrated pest management is a key concept in modern agriculture and requires chemicals with various modes of action. Planteose accumulates as a storage carbohydrate in the dry seeds of root parasitic weeds. In Orobanche minor seeds, planteose is hydrolyzed by an α-galactosidase, OmAGAL2, during germination. It was found that the OmAGAL2 inhibitor, PI-28, suppressed the radicle elongation of germinating O. minor seeds. This inhibitory activity against O. minor radicle elongation was evaluated for a series of aryloxyacetylthioureas synthesized based on the structure of PI-28. Compounds with a 3-Cl or 4-Cl substituent on the benzene ring in the phenoxy moiety in PI-28 exhibited more potent activity than the parent PI-28. This is the first report on the effect of aryloxyacetylthioureas on a root parasitic weed and will contribute to the development of control reagents for root parasitic weeds.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure–activity relationship of aryloxyacetylthioureas for the inhibition of &lt;i&gt;Orobanche minor&lt;/i&gt; radicle elongation\",\"authors\":\"Atsushi Okazawa, Shizuki Noda, Yusuke Mimura, Kotaro Fujino, Takatoshi Wakabayashi, Daisaku Ohta, Yukihiro Sugimoto, Motohiro Sonoda\",\"doi\":\"10.1584/jpestics.d23-034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orobanchaceae root parasitic weeds cause significant damage to agriculture and become threats to global food security. Integrated pest management is a key concept in modern agriculture and requires chemicals with various modes of action. Planteose accumulates as a storage carbohydrate in the dry seeds of root parasitic weeds. In Orobanche minor seeds, planteose is hydrolyzed by an α-galactosidase, OmAGAL2, during germination. It was found that the OmAGAL2 inhibitor, PI-28, suppressed the radicle elongation of germinating O. minor seeds. This inhibitory activity against O. minor radicle elongation was evaluated for a series of aryloxyacetylthioureas synthesized based on the structure of PI-28. Compounds with a 3-Cl or 4-Cl substituent on the benzene ring in the phenoxy moiety in PI-28 exhibited more potent activity than the parent PI-28. This is the first report on the effect of aryloxyacetylthioureas on a root parasitic weed and will contribute to the development of control reagents for root parasitic weeds.\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.d23-034\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1584/jpestics.d23-034","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根寄生杂草对农业造成严重危害,对全球粮食安全构成威胁。有害生物综合治理是现代农业的一个重要概念,需要多种作用方式的化学品。植物糖作为储存碳水化合物在根寄生杂草的干燥种子中积累。在Orobanche minor种子中,植物糖在萌发时被α-半乳糖苷酶OmAGAL2水解。发现OmAGAL2抑制剂PI-28抑制萌发的O. minor种子的胚根伸长。以PI-28的结构为基础合成了一系列芳基乙酰硫脲,并对其自由基伸长的抑制活性进行了评价。PI-28苯氧基部分苯环上含有3-Cl或4-Cl取代基的化合物比母体PI-28具有更强的活性。本文首次报道了芳基乙酰硫脲对根寄生杂草的防治作用,为根寄生杂草防治试剂的开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The structure–activity relationship of aryloxyacetylthioureas for the inhibition of <i>Orobanche minor</i> radicle elongation
Orobanchaceae root parasitic weeds cause significant damage to agriculture and become threats to global food security. Integrated pest management is a key concept in modern agriculture and requires chemicals with various modes of action. Planteose accumulates as a storage carbohydrate in the dry seeds of root parasitic weeds. In Orobanche minor seeds, planteose is hydrolyzed by an α-galactosidase, OmAGAL2, during germination. It was found that the OmAGAL2 inhibitor, PI-28, suppressed the radicle elongation of germinating O. minor seeds. This inhibitory activity against O. minor radicle elongation was evaluated for a series of aryloxyacetylthioureas synthesized based on the structure of PI-28. Compounds with a 3-Cl or 4-Cl substituent on the benzene ring in the phenoxy moiety in PI-28 exhibited more potent activity than the parent PI-28. This is the first report on the effect of aryloxyacetylthioureas on a root parasitic weed and will contribute to the development of control reagents for root parasitic weeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
期刊最新文献
Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates. Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana A reliable quantification of organophosphorus pesticides in brown rice samples for proficiency testing using Japanese official analytical method, QuEChERS, and modified QuEChERS combined with isotope dilution mass spectrometry Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1