Hendrik Husstedt, Wiebke Hilgerdenaar, Marlitt Frenz, Florian Denk, Jürgen Tchorz
{"title":"用技术测量和不适等级评价助听器的脉冲噪声降低","authors":"Hendrik Husstedt, Wiebke Hilgerdenaar, Marlitt Frenz, Florian Denk, Jürgen Tchorz","doi":"10.1051/aacus/2023042","DOIUrl":null,"url":null,"abstract":"Short, impulse-like sounds such as slamming of a door or rattle of dishes can be uncomfortable for hearing aid users. Therefore, many hearing aids provide impulse (or transient) noise reduction (INR) that should reduce loud and short sounds without impairing desired signals. In this work, we want to address the question whether hearing aid users require this type of signal processing to experience impulse sounds similarly as normal-hearing listeners. For this purpose, we evaluated INR in six commercially available hearing aids with technical measurements and with test subjects. During the technical evaluation, we presented seven different impulse signals to the hearing aids attached to a head and torso simulator (HATS) and determined the C-weighted peak sound pressure levels ( L C,peak ) at the output in different configurations. For the evaluation with test subjects, the discomfort of the same impulse sounds was rated by 24 hearing-impaired and 20 normal-hearing subjects. All subjects rated the discomfort unaided, and the hearing-impaired subjects also while successively wearing all six hearing aids with and without activated INR. As a main conclusion, hearing aid users without INR did not experience more discomfort compared to normal-hearing listeners for most of the impulse signals tested including the most uncomfortable ones, but INR further reduced experienced discomfort. Moreover, the technical measurements were correlated with the subjective ratings on discomfort.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"57 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of impulse noise reduction in hearing aids with technical measurements and ratings of discomfort\",\"authors\":\"Hendrik Husstedt, Wiebke Hilgerdenaar, Marlitt Frenz, Florian Denk, Jürgen Tchorz\",\"doi\":\"10.1051/aacus/2023042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short, impulse-like sounds such as slamming of a door or rattle of dishes can be uncomfortable for hearing aid users. Therefore, many hearing aids provide impulse (or transient) noise reduction (INR) that should reduce loud and short sounds without impairing desired signals. In this work, we want to address the question whether hearing aid users require this type of signal processing to experience impulse sounds similarly as normal-hearing listeners. For this purpose, we evaluated INR in six commercially available hearing aids with technical measurements and with test subjects. During the technical evaluation, we presented seven different impulse signals to the hearing aids attached to a head and torso simulator (HATS) and determined the C-weighted peak sound pressure levels ( L C,peak ) at the output in different configurations. For the evaluation with test subjects, the discomfort of the same impulse sounds was rated by 24 hearing-impaired and 20 normal-hearing subjects. All subjects rated the discomfort unaided, and the hearing-impaired subjects also while successively wearing all six hearing aids with and without activated INR. As a main conclusion, hearing aid users without INR did not experience more discomfort compared to normal-hearing listeners for most of the impulse signals tested including the most uncomfortable ones, but INR further reduced experienced discomfort. Moreover, the technical measurements were correlated with the subjective ratings on discomfort.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2023042\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/aacus/2023042","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Evaluation of impulse noise reduction in hearing aids with technical measurements and ratings of discomfort
Short, impulse-like sounds such as slamming of a door or rattle of dishes can be uncomfortable for hearing aid users. Therefore, many hearing aids provide impulse (or transient) noise reduction (INR) that should reduce loud and short sounds without impairing desired signals. In this work, we want to address the question whether hearing aid users require this type of signal processing to experience impulse sounds similarly as normal-hearing listeners. For this purpose, we evaluated INR in six commercially available hearing aids with technical measurements and with test subjects. During the technical evaluation, we presented seven different impulse signals to the hearing aids attached to a head and torso simulator (HATS) and determined the C-weighted peak sound pressure levels ( L C,peak ) at the output in different configurations. For the evaluation with test subjects, the discomfort of the same impulse sounds was rated by 24 hearing-impaired and 20 normal-hearing subjects. All subjects rated the discomfort unaided, and the hearing-impaired subjects also while successively wearing all six hearing aids with and without activated INR. As a main conclusion, hearing aid users without INR did not experience more discomfort compared to normal-hearing listeners for most of the impulse signals tested including the most uncomfortable ones, but INR further reduced experienced discomfort. Moreover, the technical measurements were correlated with the subjective ratings on discomfort.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.