非线性航天器动力学控制的新学习方法

Bo-Ruei Huang, Timothy Sands
{"title":"非线性航天器动力学控制的新学习方法","authors":"Bo-Ruei Huang, Timothy Sands","doi":"10.59400/jam.v1i1.42","DOIUrl":null,"url":null,"abstract":"With accurate dynamic system parameters (embodied in self-awareness statements), a controller can provide precise signals for tracking desired state trajectories. If dynamic system parameters are initially guessed inaccurately, a learning method may be used to find the accurate parameters. In the deterministic artificial intelligence method, self-awareness statements are formed as mathematical expressions of the governing physics. When the nonlinear, coupled expressions are precisely parameterized as the product of known matrix components and unknown vectrix (i.e., an intermediate between a dyadic and a matrix in regression form) tracking errors may be projected onto the known matrix to update the unknown vectrix in an optimal form (in a two-norm sense). In this work, a modified learning method is proposed and proved to have global convergence of both state error and parameter estimation error. The modified learning method is compared with those in the prequels using simulation experiments of three-dimensional rigid body dynamic rotation motion. The achieved state error convergence using the modified approach is two magnitudes better than using the methods in the prequels.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel learning for control of nonlinear spacecraft dynamics\",\"authors\":\"Bo-Ruei Huang, Timothy Sands\",\"doi\":\"10.59400/jam.v1i1.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With accurate dynamic system parameters (embodied in self-awareness statements), a controller can provide precise signals for tracking desired state trajectories. If dynamic system parameters are initially guessed inaccurately, a learning method may be used to find the accurate parameters. In the deterministic artificial intelligence method, self-awareness statements are formed as mathematical expressions of the governing physics. When the nonlinear, coupled expressions are precisely parameterized as the product of known matrix components and unknown vectrix (i.e., an intermediate between a dyadic and a matrix in regression form) tracking errors may be projected onto the known matrix to update the unknown vectrix in an optimal form (in a two-norm sense). In this work, a modified learning method is proposed and proved to have global convergence of both state error and parameter estimation error. The modified learning method is compared with those in the prequels using simulation experiments of three-dimensional rigid body dynamic rotation motion. The achieved state error convergence using the modified approach is two magnitudes better than using the methods in the prequels.\",\"PeriodicalId\":495855,\"journal\":{\"name\":\"Journal of AppliedMath\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of AppliedMath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59400/jam.v1i1.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i1.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过精确的动态系统参数(体现在自我意识声明中),控制器可以为跟踪期望的状态轨迹提供精确的信号。如果动态系统参数最初的猜测不准确,可以使用学习方法来找到准确的参数。在确定性人工智能方法中,自我意识陈述被形成为控制物理的数学表达式。当非线性耦合表达式被精确地参数化为已知矩阵分量和未知向量的乘积(即,介于二元和回归形式的矩阵之间)时,跟踪误差可以投射到已知矩阵上,以最优形式(在双范数意义上)更新未知向量。本文提出了一种改进的学习方法,并证明了该方法对状态误差和参数估计误差都具有全局收敛性。通过三维刚体动态旋转运动的仿真实验,将改进后的学习方法与前人的学习方法进行了比较。使用改进的方法获得的状态误差收敛性比使用前文中的方法好两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel learning for control of nonlinear spacecraft dynamics
With accurate dynamic system parameters (embodied in self-awareness statements), a controller can provide precise signals for tracking desired state trajectories. If dynamic system parameters are initially guessed inaccurately, a learning method may be used to find the accurate parameters. In the deterministic artificial intelligence method, self-awareness statements are formed as mathematical expressions of the governing physics. When the nonlinear, coupled expressions are precisely parameterized as the product of known matrix components and unknown vectrix (i.e., an intermediate between a dyadic and a matrix in regression form) tracking errors may be projected onto the known matrix to update the unknown vectrix in an optimal form (in a two-norm sense). In this work, a modified learning method is proposed and proved to have global convergence of both state error and parameter estimation error. The modified learning method is compared with those in the prequels using simulation experiments of three-dimensional rigid body dynamic rotation motion. The achieved state error convergence using the modified approach is two magnitudes better than using the methods in the prequels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological analysis of multiple tables Topological analysis of multiple tables Hindustani classical music revisited statistically: Does the order of Markov chain in the note dependence depend on the raga or the composition? Enhancing handwritten numeric string recognition through incremental support vector machines A logical approach to validate the Goldbach conjecture: Paper 1/3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1