生物地球化学- argo浮标揭示了浮游植物群落组成驱动的南大洋深层碳通量的明显纬度梯度

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2023-10-27 DOI:10.1029/2022GB007624
Louis Terrats, Hervé Claustre, Nathan Briggs, Antoine Poteau, Benjamin Briat, Léo Lacour, Florian Ricour, Antoine Mangin, Griet Neukermans
{"title":"生物地球化学- argo浮标揭示了浮游植物群落组成驱动的南大洋深层碳通量的明显纬度梯度","authors":"Louis Terrats,&nbsp;Hervé Claustre,&nbsp;Nathan Briggs,&nbsp;Antoine Poteau,&nbsp;Benjamin Briat,&nbsp;Léo Lacour,&nbsp;Florian Ricour,&nbsp;Antoine Mangin,&nbsp;Griet Neukermans","doi":"10.1029/2022GB007624","DOIUrl":null,"url":null,"abstract":"<p>The gravitational sinking of particles in the mesopelagic layer (∼200–1,000 m) transfers to the deep ocean a part of atmospheric carbon fixed by phytoplankton. This process, called the gravitational pump, exerts an important control on atmospheric CO<sub>2</sub> levels but remains poorly characterized given the limited spatio-temporal coverage of ship-based flux measurements. Here, we examined the gravitational pump with BioGeoChemical-Argo floats in the Southern Ocean, a critically under-sampled area. Using time-series of bio-optical measurements, we characterized the concentration of particles in the productive zone, their export and transfer efficiency in the underlying mesopelagic zone, and the magnitude of sinking flux at 1,000 m. We separated float observations into six environments delineated by latitudinal fronts, sea-ice coverage, and natural iron fertilization. Results show a significant increase in the sinking-particle flux at 1,000 m with increasing latitude, despite comparable particle concentrations in the productive layer. The variability in deep flux was driven by changes in the transfer efficiency of the flux, related to the composition of the phytoplanktonic community and the size of particles, with intense flux associated with the predominance of micro-phytoplankton and large particles at the surface. We quantified the relationships between the nature of surface particles and the flux at 1,000 m and used these results to upscale our flux survey across the whole Southern Ocean using surface observations by floats and satellites. We then estimated the basin-wide Spring-Summer flux of sinking particles at 1,000 m over the Southern Ocean (0.054 ± 0.021 Pg C).</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022GB007624","citationCount":"0","resultStr":"{\"title\":\"BioGeoChemical-Argo Floats Reveal Stark Latitudinal Gradient in the Southern Ocean Deep Carbon Flux Driven by Phytoplankton Community Composition\",\"authors\":\"Louis Terrats,&nbsp;Hervé Claustre,&nbsp;Nathan Briggs,&nbsp;Antoine Poteau,&nbsp;Benjamin Briat,&nbsp;Léo Lacour,&nbsp;Florian Ricour,&nbsp;Antoine Mangin,&nbsp;Griet Neukermans\",\"doi\":\"10.1029/2022GB007624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gravitational sinking of particles in the mesopelagic layer (∼200–1,000 m) transfers to the deep ocean a part of atmospheric carbon fixed by phytoplankton. This process, called the gravitational pump, exerts an important control on atmospheric CO<sub>2</sub> levels but remains poorly characterized given the limited spatio-temporal coverage of ship-based flux measurements. Here, we examined the gravitational pump with BioGeoChemical-Argo floats in the Southern Ocean, a critically under-sampled area. Using time-series of bio-optical measurements, we characterized the concentration of particles in the productive zone, their export and transfer efficiency in the underlying mesopelagic zone, and the magnitude of sinking flux at 1,000 m. We separated float observations into six environments delineated by latitudinal fronts, sea-ice coverage, and natural iron fertilization. Results show a significant increase in the sinking-particle flux at 1,000 m with increasing latitude, despite comparable particle concentrations in the productive layer. The variability in deep flux was driven by changes in the transfer efficiency of the flux, related to the composition of the phytoplanktonic community and the size of particles, with intense flux associated with the predominance of micro-phytoplankton and large particles at the surface. We quantified the relationships between the nature of surface particles and the flux at 1,000 m and used these results to upscale our flux survey across the whole Southern Ocean using surface observations by floats and satellites. We then estimated the basin-wide Spring-Summer flux of sinking particles at 1,000 m over the Southern Ocean (0.054 ± 0.021 Pg C).</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022GB007624\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022GB007624\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022GB007624","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

中上层(~ 200 - 1000米)颗粒的重力沉降将浮游植物固定的一部分大气碳转移到深海。这一过程被称为引力泵,对大气中的二氧化碳水平施加了重要的控制,但由于船上通量测量的时空覆盖范围有限,其特征仍然很差。在这里,我们用生物地球化学- argo浮标在南大洋(一个严重采样不足的区域)检查了重力泵。利用生物光学测量的时间序列,我们表征了生产区的颗粒浓度,它们在下层中层区的出口和转移效率,以及1,000 m下沉通量的大小。我们将浮子观测分为六个环境,分别是纬度锋、海冰覆盖和天然铁施肥。结果表明,尽管生产层的颗粒浓度相当,但在1,000 m处的沉降颗粒通量随着纬度的增加而显著增加。深层通量的变化是由通量传递效率的变化驱动的,这与浮游植物群落的组成和颗粒的大小有关,通量的强烈与浮游植物的微小和大颗粒在表层的优势有关。我们量化了表面颗粒的性质与1000米通量之间的关系,并利用这些结果通过浮标和卫星对整个南大洋进行了通量调查。在此基础上,我们估计了南大洋上空1000 m处全海盆的沉降粒子通量(0.054±0.021 Pg C)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioGeoChemical-Argo Floats Reveal Stark Latitudinal Gradient in the Southern Ocean Deep Carbon Flux Driven by Phytoplankton Community Composition

The gravitational sinking of particles in the mesopelagic layer (∼200–1,000 m) transfers to the deep ocean a part of atmospheric carbon fixed by phytoplankton. This process, called the gravitational pump, exerts an important control on atmospheric CO2 levels but remains poorly characterized given the limited spatio-temporal coverage of ship-based flux measurements. Here, we examined the gravitational pump with BioGeoChemical-Argo floats in the Southern Ocean, a critically under-sampled area. Using time-series of bio-optical measurements, we characterized the concentration of particles in the productive zone, their export and transfer efficiency in the underlying mesopelagic zone, and the magnitude of sinking flux at 1,000 m. We separated float observations into six environments delineated by latitudinal fronts, sea-ice coverage, and natural iron fertilization. Results show a significant increase in the sinking-particle flux at 1,000 m with increasing latitude, despite comparable particle concentrations in the productive layer. The variability in deep flux was driven by changes in the transfer efficiency of the flux, related to the composition of the phytoplanktonic community and the size of particles, with intense flux associated with the predominance of micro-phytoplankton and large particles at the surface. We quantified the relationships between the nature of surface particles and the flux at 1,000 m and used these results to upscale our flux survey across the whole Southern Ocean using surface observations by floats and satellites. We then estimated the basin-wide Spring-Summer flux of sinking particles at 1,000 m over the Southern Ocean (0.054 ± 0.021 Pg C).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Indian Ocean Acidification and Its Driving Mechanisms Over the Last Four Decades (1980–2019) Off-Shelf Transport and Biogeochemical Cycling of Terrestrial Organic Carbon Along the East Siberian Continental Margin Spatial Variability and Source Identification of Trace Elements in Aerosols From Northwest Pacific Marginal Sea, Indian Ocean and South Pacific to Antarctica Issue Information Observed APO Seasonal Cycle in the Pacific: Estimation of Autumn O2 Oceanic Emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1