SREM:带有分布式学习和电动汽车网络的智能可再生能源管理方案

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2023-09-20 DOI:10.1002/eng2.12763
Huakun Huang, Sihui Xue, Lingjun Zhao, Dingrong Dai, Weijia Wang, Huijun Wu, Zhou Cao
{"title":"SREM:带有分布式学习和电动汽车网络的智能可再生能源管理方案","authors":"Huakun Huang,&nbsp;Sihui Xue,&nbsp;Lingjun Zhao,&nbsp;Dingrong Dai,&nbsp;Weijia Wang,&nbsp;Huijun Wu,&nbsp;Zhou Cao","doi":"10.1002/eng2.12763","DOIUrl":null,"url":null,"abstract":"<p>In this article, aiming to develop the Green Internet of Vehicles (G-IoV), we propose a smart energy management system that leverages the intelligence edge clients and the distributed electric vehicles (EVs). The system proposed in this article incorporates the benefits of both software, specifically in terms of the user interface, and hardware, specifically in terms of edge clients. In particular, this system integrates intelligence edge clients with an EV CAN bus network as an electronic control unit. By leveraging the intelligent edge clients recommendation system, EVs can make informed decisions on battery charging or discharging actions. As a result, a virtual-power-plant (VPP) can treat the EVs network as a vast intelligent energy storage facility, efficiently managing the battery energy of all distributed EVs connected to the platform and fully utilizing the electricity generated from renewable energy sources. We experimentally verify that using federal learning to train models in EV networks versus training models directly in EVs, using federal learning in EV networks yields better experimental results.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12763","citationCount":"0","resultStr":"{\"title\":\"SREM: Smart renewable energy management scheme with distributed learning and EV network\",\"authors\":\"Huakun Huang,&nbsp;Sihui Xue,&nbsp;Lingjun Zhao,&nbsp;Dingrong Dai,&nbsp;Weijia Wang,&nbsp;Huijun Wu,&nbsp;Zhou Cao\",\"doi\":\"10.1002/eng2.12763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, aiming to develop the Green Internet of Vehicles (G-IoV), we propose a smart energy management system that leverages the intelligence edge clients and the distributed electric vehicles (EVs). The system proposed in this article incorporates the benefits of both software, specifically in terms of the user interface, and hardware, specifically in terms of edge clients. In particular, this system integrates intelligence edge clients with an EV CAN bus network as an electronic control unit. By leveraging the intelligent edge clients recommendation system, EVs can make informed decisions on battery charging or discharging actions. As a result, a virtual-power-plant (VPP) can treat the EVs network as a vast intelligent energy storage facility, efficiently managing the battery energy of all distributed EVs connected to the platform and fully utilizing the electricity generated from renewable energy sources. We experimentally verify that using federal learning to train models in EV networks versus training models directly in EVs, using federal learning in EV networks yields better experimental results.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在开发绿色汽车互联网(G-IoV),提出了一种利用智能边缘客户端和分布式电动汽车(EV)的智能能源管理系统。本文提出的系统融合了软件(特别是用户界面)和硬件(特别是边缘客户端)的优势。特别是,该系统将智能边缘客户端与作为电子控制单元的电动汽车 CAN 总线网络相集成。通过利用智能边缘客户端推荐系统,电动汽车可以对电池充电或放电操作做出明智的决策。因此,虚拟发电厂(VPP)可以将电动汽车网络视为一个巨大的智能储能设施,有效管理连接到平台上的所有分布式电动汽车的电池能量,并充分利用可再生能源产生的电力。我们通过实验验证了在电动汽车网络中使用联邦学习训练模型与直接在电动汽车中训练模型相比,在电动汽车网络中使用联邦学习能获得更好的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SREM: Smart renewable energy management scheme with distributed learning and EV network

In this article, aiming to develop the Green Internet of Vehicles (G-IoV), we propose a smart energy management system that leverages the intelligence edge clients and the distributed electric vehicles (EVs). The system proposed in this article incorporates the benefits of both software, specifically in terms of the user interface, and hardware, specifically in terms of edge clients. In particular, this system integrates intelligence edge clients with an EV CAN bus network as an electronic control unit. By leveraging the intelligent edge clients recommendation system, EVs can make informed decisions on battery charging or discharging actions. As a result, a virtual-power-plant (VPP) can treat the EVs network as a vast intelligent energy storage facility, efficiently managing the battery energy of all distributed EVs connected to the platform and fully utilizing the electricity generated from renewable energy sources. We experimentally verify that using federal learning to train models in EV networks versus training models directly in EVs, using federal learning in EV networks yields better experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Issue Information Understanding the Effects of Manufacturing Attributes on Damage Tolerance of Additively Manufactured Parts and Exploring Synergy Among Process-Structure-Properties. A Comprehensive Review Issue Information Correction to “The Proof of Concept of Uninterrupted Push-Pull Electromagnetic Propulsion and Energy Conversion Systems for Drones and Planet Landers” Socio-economic impact of solar cooking technologies on community kitchens under different climate conditions: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1