氢燃料箱特性的估计方法

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Pressure Vessel Technology-Transactions of the Asme Pub Date : 2023-10-27 DOI:10.1115/1.4063884
Nicholas Klymyshyn, Kriston Brooks, Nathan Barrett
{"title":"氢燃料箱特性的估计方法","authors":"Nicholas Klymyshyn, Kriston Brooks, Nathan Barrett","doi":"10.1115/1.4063884","DOIUrl":null,"url":null,"abstract":"Abstract The pressure vessels needed to store hydrogen for next-generation hydrogen fuel cell vehicles are expected to be a substantial portion of the total system mass, volume, and cost. Gravimetric capacity, volumetric capacity, and cost per kilogram of usable hydrogen are key performance metrics that the U.S. Department of Energy (DOE) uses to determine the viability of hydrogen fuel cell systems. Research and development related to hydrogen storage systems covers a wide range of potential operating conditions, from cryogenic temperatures to high temperatures (above ambient) and low pressure to high pressure. Researchers at PNNL have developed methods for estimating these key pressure vessel characteristics to support on-board hydrogen storage system design and performance evaluation and to support decision-making about DOE's hydrogen storage system research investments. This article describes the pressure tank estimation methodology that has been used as a stand-alone calculation and has been incorporated into larger system evaluation tools. The methodology estimates the geometry, mass, and material cost of Type I, Type III, and Type IV pressure vessels based on operating pressure and material strength at the system's operating temperature, using classical thin-wall and thick-wall pressure vessel stress calculations. The geometry, mass, and material cost requirements of the pressure vessel have significant impacts on the total system performance.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods For Estimating Hydrogen Fuel Tank Characteristics\",\"authors\":\"Nicholas Klymyshyn, Kriston Brooks, Nathan Barrett\",\"doi\":\"10.1115/1.4063884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The pressure vessels needed to store hydrogen for next-generation hydrogen fuel cell vehicles are expected to be a substantial portion of the total system mass, volume, and cost. Gravimetric capacity, volumetric capacity, and cost per kilogram of usable hydrogen are key performance metrics that the U.S. Department of Energy (DOE) uses to determine the viability of hydrogen fuel cell systems. Research and development related to hydrogen storage systems covers a wide range of potential operating conditions, from cryogenic temperatures to high temperatures (above ambient) and low pressure to high pressure. Researchers at PNNL have developed methods for estimating these key pressure vessel characteristics to support on-board hydrogen storage system design and performance evaluation and to support decision-making about DOE's hydrogen storage system research investments. This article describes the pressure tank estimation methodology that has been used as a stand-alone calculation and has been incorporated into larger system evaluation tools. The methodology estimates the geometry, mass, and material cost of Type I, Type III, and Type IV pressure vessels based on operating pressure and material strength at the system's operating temperature, using classical thin-wall and thick-wall pressure vessel stress calculations. The geometry, mass, and material cost requirements of the pressure vessel have significant impacts on the total system performance.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063884\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063884","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为下一代氢燃料电池汽车储存氢气所需的压力容器预计将占整个系统质量、体积和成本的很大一部分。重量容量、体积容量和每公斤可用氢的成本是美国能源部(DOE)用来确定氢燃料电池系统可行性的关键性能指标。与储氢系统相关的研究和开发涵盖了广泛的潜在操作条件,从低温到高温(高于环境温度),从低压到高压。PNNL的研究人员已经开发出估算这些关键压力容器特性的方法,以支持机载储氢系统的设计和性能评估,并支持美国能源部储氢系统研究投资的决策。本文描述了压力罐估算方法,该方法已被用作独立计算,并已并入更大的系统评估工具中。该方法基于系统工作温度下的工作压力和材料强度,使用经典的薄壁和厚壁压力容器应力计算,估算I型、III型和IV型压力容器的几何形状、质量和材料成本。压力容器的几何形状、质量和材料成本要求对整个系统的性能有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods For Estimating Hydrogen Fuel Tank Characteristics
Abstract The pressure vessels needed to store hydrogen for next-generation hydrogen fuel cell vehicles are expected to be a substantial portion of the total system mass, volume, and cost. Gravimetric capacity, volumetric capacity, and cost per kilogram of usable hydrogen are key performance metrics that the U.S. Department of Energy (DOE) uses to determine the viability of hydrogen fuel cell systems. Research and development related to hydrogen storage systems covers a wide range of potential operating conditions, from cryogenic temperatures to high temperatures (above ambient) and low pressure to high pressure. Researchers at PNNL have developed methods for estimating these key pressure vessel characteristics to support on-board hydrogen storage system design and performance evaluation and to support decision-making about DOE's hydrogen storage system research investments. This article describes the pressure tank estimation methodology that has been used as a stand-alone calculation and has been incorporated into larger system evaluation tools. The methodology estimates the geometry, mass, and material cost of Type I, Type III, and Type IV pressure vessels based on operating pressure and material strength at the system's operating temperature, using classical thin-wall and thick-wall pressure vessel stress calculations. The geometry, mass, and material cost requirements of the pressure vessel have significant impacts on the total system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
77
审稿时长
4.2 months
期刊介绍: The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards. Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.
期刊最新文献
On The Strength And Tightness Of Asme B16.5 And B16.47 Series A Standard Flanges A Re-Evaluation of Rupture Data for CF8C-Plus Austenitic Stainless Steel Mechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault An Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints Methods For Estimating Hydrogen Fuel Tank Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1