自然阳光对垃圾渗滤液处理生物系统的潜在积极影响

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2023-10-27 DOI:10.1002/clen.202300065
Liyun Cai
{"title":"自然阳光对垃圾渗滤液处理生物系统的潜在积极影响","authors":"Liyun Cai","doi":"10.1002/clen.202300065","DOIUrl":null,"url":null,"abstract":"<p>Activated sludge filtration performance is a significant mean to evaluate membrane fouling trend for wastewater treatment. Here the impact of sunlight irradiation on activated sludge filtration performance and microbial communities in sequencing batch reactors (SBRs) when treating raw landfill leachate were studied. The sludge in photic SBR (i.e., SBR exposed to natural sunlight) exhibited better filtration performance compared to dark SBR (i.e., SBR unexposed to sunlight). The removal efficiency of COD and NH<sub>4</sub><sup>+</sup>-N in the photic SBR were slightly higher than those in the dark SBR. The contents of the extracellular polymeric substances (EPSs) of sludge in both SBRs initially increased and then decreased. However, in the later period, the sludge filtration performance worsened due to the fungal activity in the dark SBR. Natural sunlight irradiation promoted sludge filtration performance by affecting the microorganism structure in the photic SBR. The bacterial genus <i>Thauera</i> was dominant in the photic SBR (39.35%), whereas Planktosalinus and Ottowia were dominant in the dark SBR (16.84% and 12.55%, respectively). Natural sunlight irradiation had a prominent effect on the fungal diversity in the system, and filamentous bulking caused by the fungi genus <i>Trichosporon</i>’s proliferation was observed in the dark SBR but not in the photic SBR, which also increased the polysaccharide content.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"51 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential positive effects of natural sunlight on a biological system for landfill leachate treatment\",\"authors\":\"Liyun Cai\",\"doi\":\"10.1002/clen.202300065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Activated sludge filtration performance is a significant mean to evaluate membrane fouling trend for wastewater treatment. Here the impact of sunlight irradiation on activated sludge filtration performance and microbial communities in sequencing batch reactors (SBRs) when treating raw landfill leachate were studied. The sludge in photic SBR (i.e., SBR exposed to natural sunlight) exhibited better filtration performance compared to dark SBR (i.e., SBR unexposed to sunlight). The removal efficiency of COD and NH<sub>4</sub><sup>+</sup>-N in the photic SBR were slightly higher than those in the dark SBR. The contents of the extracellular polymeric substances (EPSs) of sludge in both SBRs initially increased and then decreased. However, in the later period, the sludge filtration performance worsened due to the fungal activity in the dark SBR. Natural sunlight irradiation promoted sludge filtration performance by affecting the microorganism structure in the photic SBR. The bacterial genus <i>Thauera</i> was dominant in the photic SBR (39.35%), whereas Planktosalinus and Ottowia were dominant in the dark SBR (16.84% and 12.55%, respectively). Natural sunlight irradiation had a prominent effect on the fungal diversity in the system, and filamentous bulking caused by the fungi genus <i>Trichosporon</i>’s proliferation was observed in the dark SBR but not in the photic SBR, which also increased the polysaccharide content.</p>\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"51 12\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300065\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300065","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

活性污泥过滤性能是评估污水处理膜堵塞趋势的重要手段。本文研究了在处理垃圾填埋场渗滤液原液时,阳光照射对序批式反应器(SBR)中活性污泥过滤性能和微生物群落的影响。与暗色 SBR(即未受阳光照射的 SBR)相比,光色 SBR(即受自然阳光照射的 SBR)中的污泥具有更好的过滤性能。光照 SBR 对 COD 和 NH4+-N 的去除率略高于黑暗 SBR。两种 SBR 中污泥的胞外高分子物质(EPS)含量最初都有所上升,随后有所下降。但在后期,由于暗色 SBR 中真菌的活动,污泥过滤性能恶化。自然光照通过影响光照 SBR 中的微生物结构,促进了污泥过滤性能。细菌属 Thauera 在光照 SBR 中占优势(39.35%),而 Planktosalinus 和 Ottowia 在黑暗 SBR 中占优势(分别为 16.84% 和 12.55%)。自然阳光照射对系统中的真菌多样性有显著影响,在暗色 SBR 中观察到由真菌三孢属增殖引起的丝状隆起,而在光色 SBR 中没有观察到,这也增加了多糖含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential positive effects of natural sunlight on a biological system for landfill leachate treatment

Activated sludge filtration performance is a significant mean to evaluate membrane fouling trend for wastewater treatment. Here the impact of sunlight irradiation on activated sludge filtration performance and microbial communities in sequencing batch reactors (SBRs) when treating raw landfill leachate were studied. The sludge in photic SBR (i.e., SBR exposed to natural sunlight) exhibited better filtration performance compared to dark SBR (i.e., SBR unexposed to sunlight). The removal efficiency of COD and NH4+-N in the photic SBR were slightly higher than those in the dark SBR. The contents of the extracellular polymeric substances (EPSs) of sludge in both SBRs initially increased and then decreased. However, in the later period, the sludge filtration performance worsened due to the fungal activity in the dark SBR. Natural sunlight irradiation promoted sludge filtration performance by affecting the microorganism structure in the photic SBR. The bacterial genus Thauera was dominant in the photic SBR (39.35%), whereas Planktosalinus and Ottowia were dominant in the dark SBR (16.84% and 12.55%, respectively). Natural sunlight irradiation had a prominent effect on the fungal diversity in the system, and filamentous bulking caused by the fungi genus Trichosporon’s proliferation was observed in the dark SBR but not in the photic SBR, which also increased the polysaccharide content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 11/2024 Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India Issue Information: Clean Soil Air Water. 10/2024 Geochemical Interaction and Bioavailability of Zinc in Soil Under Long-Term Integrated Nutrient Management in Pearl Millet–Wheat System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1