利用神经网络研究库存控制中的趋势关键词

IF 1.9 Q3 ENGINEERING, INDUSTRIAL Production Engineering Archives Pub Date : 2023-10-27 DOI:10.30657/pea.2023.29.52
Adam Sadowski, Michał Sadowski, Per Engelseth, Zbigniew Galar, Beata Skowron-Grabowska
{"title":"利用神经网络研究库存控制中的趋势关键词","authors":"Adam Sadowski, Michał Sadowski, Per Engelseth, Zbigniew Galar, Beata Skowron-Grabowska","doi":"10.30657/pea.2023.29.52","DOIUrl":null,"url":null,"abstract":"Abstract Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.","PeriodicalId":36269,"journal":{"name":"Production Engineering Archives","volume":"18 10","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using neural networks to examine trending keywords in Inventory Control\",\"authors\":\"Adam Sadowski, Michał Sadowski, Per Engelseth, Zbigniew Galar, Beata Skowron-Grabowska\",\"doi\":\"10.30657/pea.2023.29.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.\",\"PeriodicalId\":36269,\"journal\":{\"name\":\"Production Engineering Archives\",\"volume\":\"18 10\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production Engineering Archives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30657/pea.2023.29.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Engineering Archives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30657/pea.2023.29.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要库存控制是物流研究的重点领域之一。使用SCOPUS数据库,我们使用统计方法的三角测量和机器学习处理了9829篇关于库存控制的文章。我们已经证明了所提出的统计方法和图注意网络(GAT)架构在库存控制研究中确定趋势设定关键词的有效性。我们通过展示文章中关键词的演变,展示了1950年至2021年间研究的变化。我们研究的一个新颖之处是应用无监督深度学习的文献计量分析方法。它可以识别出决定文章高引用率的关键字。在库存控制研究中提出的研究知识结构的理论框架是通用的,可以应用于任何知识领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using neural networks to examine trending keywords in Inventory Control
Abstract Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Production Engineering Archives
Production Engineering Archives Engineering-Industrial and Manufacturing Engineering
CiteScore
6.10
自引率
13.00%
发文量
50
审稿时长
6 weeks
期刊最新文献
Shallot Price Forecasting Models: Comparison among Various Techniques Framework for Increasing Eco-efficiency in the Tofu Production Process: Circular Economy Approach Diagnostic methods and ways of testing the workability of coal - a review Company Cybersecurity System: Assessment, Risks and Expectations Experimental-numerical analysis of the fracture process in smooth and notched V specimens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1