Mahmoud M. Elwakil, Helmy M. El Zoghaby, Soliman M. Sharaf, Magdi A. Mosa
{"title":"基于优化bang-bang的自适应虚拟同步发电机控制提高孤岛微电网稳定性","authors":"Mahmoud M. Elwakil, Helmy M. El Zoghaby, Soliman M. Sharaf, Magdi A. Mosa","doi":"10.1186/s41601-023-00333-7","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a virtual synchronous generator (VSG) controller is applied to a hybrid energy storage system (HESS) containing a battery energy storage system and supercapacitor storage system for maintaining the frequency stability of an isolated microgrid. The microgrid contains a photovoltaic generation system and a diesel generator in addition to the HESS and two constant impedance loads that are fed through a medium voltage radial feeding system. The adaptive virtual inertia constant (H) with constant virtual damping coefficient (D) based on ‘ bang-bang’ control for the microgrid’s frequency stability enhancement is investigated and compared with the constant parameter VSG. In addition, the bang-bang control is modified to adapt the D beside the adaptive H, and the system response is investigated and compared with the conventional adaptive H technique. The VSG parameters are evaluated based on two different methods. The first is a computational method based on the simplified small signal stability analysis, while the other is based on an optimization method using two different objective functions and the particle swarm optimization technique. This paper also investigates the superiority of the proposed technique compared to other techniques in enhancing frequency stability, accelerating steady-state frequency restoration, and reducing the energy requirement of the HESS. The required power from the HESS is shared between the two energy storages using the low pass filter technique so as to reduce battery peak current.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement”\",\"authors\":\"Mahmoud M. Elwakil, Helmy M. El Zoghaby, Soliman M. Sharaf, Magdi A. Mosa\",\"doi\":\"10.1186/s41601-023-00333-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a virtual synchronous generator (VSG) controller is applied to a hybrid energy storage system (HESS) containing a battery energy storage system and supercapacitor storage system for maintaining the frequency stability of an isolated microgrid. The microgrid contains a photovoltaic generation system and a diesel generator in addition to the HESS and two constant impedance loads that are fed through a medium voltage radial feeding system. The adaptive virtual inertia constant (H) with constant virtual damping coefficient (D) based on ‘ bang-bang’ control for the microgrid’s frequency stability enhancement is investigated and compared with the constant parameter VSG. In addition, the bang-bang control is modified to adapt the D beside the adaptive H, and the system response is investigated and compared with the conventional adaptive H technique. The VSG parameters are evaluated based on two different methods. The first is a computational method based on the simplified small signal stability analysis, while the other is based on an optimization method using two different objective functions and the particle swarm optimization technique. This paper also investigates the superiority of the proposed technique compared to other techniques in enhancing frequency stability, accelerating steady-state frequency restoration, and reducing the energy requirement of the HESS. The required power from the HESS is shared between the two energy storages using the low pass filter technique so as to reduce battery peak current.\",\"PeriodicalId\":51639,\"journal\":{\"name\":\"Protection and Control of Modern Power Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection and Control of Modern Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41601-023-00333-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection and Control of Modern Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41601-023-00333-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
“Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement”
Abstract In this paper, a virtual synchronous generator (VSG) controller is applied to a hybrid energy storage system (HESS) containing a battery energy storage system and supercapacitor storage system for maintaining the frequency stability of an isolated microgrid. The microgrid contains a photovoltaic generation system and a diesel generator in addition to the HESS and two constant impedance loads that are fed through a medium voltage radial feeding system. The adaptive virtual inertia constant (H) with constant virtual damping coefficient (D) based on ‘ bang-bang’ control for the microgrid’s frequency stability enhancement is investigated and compared with the constant parameter VSG. In addition, the bang-bang control is modified to adapt the D beside the adaptive H, and the system response is investigated and compared with the conventional adaptive H technique. The VSG parameters are evaluated based on two different methods. The first is a computational method based on the simplified small signal stability analysis, while the other is based on an optimization method using two different objective functions and the particle swarm optimization technique. This paper also investigates the superiority of the proposed technique compared to other techniques in enhancing frequency stability, accelerating steady-state frequency restoration, and reducing the energy requirement of the HESS. The required power from the HESS is shared between the two energy storages using the low pass filter technique so as to reduce battery peak current.
期刊介绍:
Protection and Control of Modern Power Systems (PCMP) is the first international modern power system protection and control journal originated in China. The journal is dedicated to presenting top-level academic achievements in this field and aims to provide a platform for international researchers and engineers, with a special focus on authors from China, to maximize the papers' impact worldwide and contribute to the development of the power industry. PCMP is sponsored by Xuchang Ketop Electrical Research Institute and is edited and published by Power System Protection and Control Press.
PCMP focuses on advanced views, techniques, methodologies, and experience in the field of protection and control of modern power systems to showcase the latest technological achievements. However, it is important to note that the journal will cease to be published by SpringerOpen as of 31 December 2023. Nonetheless, it will continue in cooperation with a new publisher.