利用边缘加权提高增益的1x5平面阵列微带天线设计

{"title":"利用边缘加权提高增益的1x5平面阵列微带天线设计","authors":"","doi":"10.24425/ijet.2023.147688","DOIUrl":null,"url":null,"abstract":"— Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"17 2","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of 1x5 Planar Array Microstrip Antenna with Edge Weighting to Increase Gain\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2023.147688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"17 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2023.147688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.147688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of 1x5 Planar Array Microstrip Antenna with Edge Weighting to Increase Gain
— Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1