{"title":"非洲上空一氧化碳浓度的时空变化和趋势:MOPITT 数据的启示","authors":"Chinelo Okpalaonwuka, Sunday Udo, Igwe Ewona","doi":"10.1007/s11869-023-01457-3","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon monoxide (CO) is an indirect greenhouse gas that has a significant impact on atmospheric chemistry. This study investigates the spatial and temporal variation and trend in CO concentrations over Africa from 2000 to 2019 using data from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument. The study classifies Africa into eight subregions based on emission inventories: northern hemisphere (NH), southern hemisphere (SH), arid (A), semi-arid north (SAN), savannah NH (SNH), savannah SH (SSH), semi-arid south (SAS), and tropical rainforest (TRF). It is observed that the northern hemisphere contributes about 54.07% of CO over Africa, while the SH accounts for 45.93%. The research reveals that the annual mean columnar CO over Africa declined significantly, with most subregions exhibiting a significant decrease in columnar CO, particularly over the NH windows. The columnar CO over Africa also revealed a seasonal pattern with two peaks in DJF (December-February) and SON (September–November), reflecting affluence from both hemispheres. The seasonal maxima and minima differ among subregions. The study further demonstrates that the tropospheric CO’s spatial and temporal variability in most subregions in Africa are sensitive to biomass burning, with MOPITT CO, MODIS fire count, and MODIS FRP being key parameters used to understand CO transport and fire emission across Africa. The study is relevant to climate researchers and policymakers seeking to understand the impact of CO on atmospheric chemistry, air quality, and climate change.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 3","pages":"469 - 484"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal variation and trend in carbon monoxide concentration over Africa: insights from MOPITT Data\",\"authors\":\"Chinelo Okpalaonwuka, Sunday Udo, Igwe Ewona\",\"doi\":\"10.1007/s11869-023-01457-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon monoxide (CO) is an indirect greenhouse gas that has a significant impact on atmospheric chemistry. This study investigates the spatial and temporal variation and trend in CO concentrations over Africa from 2000 to 2019 using data from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument. The study classifies Africa into eight subregions based on emission inventories: northern hemisphere (NH), southern hemisphere (SH), arid (A), semi-arid north (SAN), savannah NH (SNH), savannah SH (SSH), semi-arid south (SAS), and tropical rainforest (TRF). It is observed that the northern hemisphere contributes about 54.07% of CO over Africa, while the SH accounts for 45.93%. The research reveals that the annual mean columnar CO over Africa declined significantly, with most subregions exhibiting a significant decrease in columnar CO, particularly over the NH windows. The columnar CO over Africa also revealed a seasonal pattern with two peaks in DJF (December-February) and SON (September–November), reflecting affluence from both hemispheres. The seasonal maxima and minima differ among subregions. The study further demonstrates that the tropospheric CO’s spatial and temporal variability in most subregions in Africa are sensitive to biomass burning, with MOPITT CO, MODIS fire count, and MODIS FRP being key parameters used to understand CO transport and fire emission across Africa. The study is relevant to climate researchers and policymakers seeking to understand the impact of CO on atmospheric chemistry, air quality, and climate change.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 3\",\"pages\":\"469 - 484\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-023-01457-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-023-01457-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatiotemporal variation and trend in carbon monoxide concentration over Africa: insights from MOPITT Data
Carbon monoxide (CO) is an indirect greenhouse gas that has a significant impact on atmospheric chemistry. This study investigates the spatial and temporal variation and trend in CO concentrations over Africa from 2000 to 2019 using data from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument. The study classifies Africa into eight subregions based on emission inventories: northern hemisphere (NH), southern hemisphere (SH), arid (A), semi-arid north (SAN), savannah NH (SNH), savannah SH (SSH), semi-arid south (SAS), and tropical rainforest (TRF). It is observed that the northern hemisphere contributes about 54.07% of CO over Africa, while the SH accounts for 45.93%. The research reveals that the annual mean columnar CO over Africa declined significantly, with most subregions exhibiting a significant decrease in columnar CO, particularly over the NH windows. The columnar CO over Africa also revealed a seasonal pattern with two peaks in DJF (December-February) and SON (September–November), reflecting affluence from both hemispheres. The seasonal maxima and minima differ among subregions. The study further demonstrates that the tropospheric CO’s spatial and temporal variability in most subregions in Africa are sensitive to biomass burning, with MOPITT CO, MODIS fire count, and MODIS FRP being key parameters used to understand CO transport and fire emission across Africa. The study is relevant to climate researchers and policymakers seeking to understand the impact of CO on atmospheric chemistry, air quality, and climate change.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.