近场合成孔径聚焦技术提高多层HBM扫描声显微镜检测能力

Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal
{"title":"近场合成孔径聚焦技术提高多层HBM扫描声显微镜检测能力","authors":"Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal","doi":"10.31399/asm.cp.istfa2023p0448","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":"97 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Synthetic Aperture Focusing Technique to Enhance the Inspection Capability of Multi-Layer HBM Stacks in Scanning Acoustic Microscopy\",\"authors\":\"Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal\",\"doi\":\"10.31399/asm.cp.istfa2023p0448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":\"97 17\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了利用扫描声学显微镜(SAM)增强检测高带宽存储器(HBM)堆栈的方法。由于多层结构非常复杂,因此采用了复杂的信号处理方法。为了提高检测能力和缩短检测时间,采用了合成孔径聚焦技术(SAFT)。与之前在地对空导弹数据上应用SAFT的试验相比,这次的贡献引入了近场SAFT。在换能器的近场中,还对换能器与其焦点之间的层进行了重建。这种方法允许在普通工作距离下进行测量,提供更高的频率和更高的分辨率。为了确定最优的测量设置,对不同中心频率和焦距的各种测量设置和传感器进行了系统的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-Field Synthetic Aperture Focusing Technique to Enhance the Inspection Capability of Multi-Layer HBM Stacks in Scanning Acoustic Microscopy
Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
11 weeks
期刊最新文献
Prevalence of Secondary Hyperparathyroidism in Hemo- Dialysis Patients Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Estimation of Rotavirus Associated Diarrheal Disease Burden Amongst Primary School Children of Sindh Functional Outcome of Shaft of Femur Fracture Fixation with Elastic Nail in Children Between 05 to 10 Years of Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1