完整的压缩传感系统扫描探针显微镜

E.L. Principe, K.M. Scammon, B.W. Kempshall, J.J. Hagen
{"title":"完整的压缩传感系统扫描探针显微镜","authors":"E.L. Principe, K.M. Scammon, B.W. Kempshall, J.J. Hagen","doi":"10.31399/asm.cp.istfa2023p0399","DOIUrl":null,"url":null,"abstract":"Abstract An approach to overcome barriers to practical Compressed Sensing (CS) implementation in serial scanning electron microscopes (SEM) or scanning transmission electron microscopes (STEM) is presented which integrates scan generator hardware specifically developed for CS, a novel and generalized CS sparse sampling strategy, and an ultra-fast reconstruction method, to form a complete CS system for 2D or 3D scanning probe microscopy. The system is capable of producing a wide variety of highly random sparse sampling scan patterns with any fractional degree of sparsity from 0- 99.9% while not requiring fast beam blanking. Reconstructing a 2kx2k or 4kx4k image requires ~150-300ms. The ultra-fast reconstruction means it is possible to view a dynamic reduced raster reconstructed image based upon a fractional real-time dose. This CS platform provides a framework to explore a rich environment of use cases in CS electron microscopy that benefit from the combination of faster acquisition and reduced probe interaction.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete Compressed Sensing System For Scanning Probe Microscopy\",\"authors\":\"E.L. Principe, K.M. Scammon, B.W. Kempshall, J.J. Hagen\",\"doi\":\"10.31399/asm.cp.istfa2023p0399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An approach to overcome barriers to practical Compressed Sensing (CS) implementation in serial scanning electron microscopes (SEM) or scanning transmission electron microscopes (STEM) is presented which integrates scan generator hardware specifically developed for CS, a novel and generalized CS sparse sampling strategy, and an ultra-fast reconstruction method, to form a complete CS system for 2D or 3D scanning probe microscopy. The system is capable of producing a wide variety of highly random sparse sampling scan patterns with any fractional degree of sparsity from 0- 99.9% while not requiring fast beam blanking. Reconstructing a 2kx2k or 4kx4k image requires ~150-300ms. The ultra-fast reconstruction means it is possible to view a dynamic reduced raster reconstructed image based upon a fractional real-time dose. This CS platform provides a framework to explore a rich environment of use cases in CS electron microscopy that benefit from the combination of faster acquisition and reduced probe interaction.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种在串行扫描电子显微镜(SEM)或扫描透射电子显微镜(STEM)中实现压缩感知(CS)的方法,该方法集成了专门为CS开发的扫描生成器硬件、一种新颖的广义CS稀疏采样策略和一种超快速重建方法,形成了一个完整的二维或三维扫描探针显微镜的CS系统。该系统能够在不需要快速波束消隐的情况下,产生各种高度随机稀疏采样扫描模式,其稀疏度从0- 99.9%不等。重建2kx2k或4kx4k图像需要150-300ms。超快速重建意味着可以查看基于分数实时剂量的动态减少光栅重建图像。这个CS平台提供了一个框架来探索CS电子显微镜中丰富的用例环境,这些用例受益于更快的采集和减少探针交互的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complete Compressed Sensing System For Scanning Probe Microscopy
Abstract An approach to overcome barriers to practical Compressed Sensing (CS) implementation in serial scanning electron microscopes (SEM) or scanning transmission electron microscopes (STEM) is presented which integrates scan generator hardware specifically developed for CS, a novel and generalized CS sparse sampling strategy, and an ultra-fast reconstruction method, to form a complete CS system for 2D or 3D scanning probe microscopy. The system is capable of producing a wide variety of highly random sparse sampling scan patterns with any fractional degree of sparsity from 0- 99.9% while not requiring fast beam blanking. Reconstructing a 2kx2k or 4kx4k image requires ~150-300ms. The ultra-fast reconstruction means it is possible to view a dynamic reduced raster reconstructed image based upon a fractional real-time dose. This CS platform provides a framework to explore a rich environment of use cases in CS electron microscopy that benefit from the combination of faster acquisition and reduced probe interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
11 weeks
期刊最新文献
Prevalence of Secondary Hyperparathyroidism in Hemo- Dialysis Patients Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Estimation of Rotavirus Associated Diarrheal Disease Burden Amongst Primary School Children of Sindh Functional Outcome of Shaft of Femur Fracture Fixation with Elastic Nail in Children Between 05 to 10 Years of Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1