QbD方法在纳米系统优化中的研究进展:最新进展和战略应用

IF 1.2 4区 医学 Q4 CHEMISTRY, MEDICINAL Letters in Drug Design & Discovery Pub Date : 2023-10-10 DOI:10.2174/0115701808256947231004110357
Devika Tripathi, Jyoti Kumari, Krislay Rathour, Princy Yadav, Vikas Shukla, Awani Kumar Rai
{"title":"QbD方法在纳米系统优化中的研究进展:最新进展和战略应用","authors":"Devika Tripathi, Jyoti Kumari, Krislay Rathour, Princy Yadav, Vikas Shukla, Awani Kumar Rai","doi":"10.2174/0115701808256947231004110357","DOIUrl":null,"url":null,"abstract":"Abstract: Nanotechnology has made great strides in developing targeted drug delivery systems over the past few decades. These systems have garnered attention for their unique biological properties and ability to deliver drugs in a stable and sustainable manner. Despite these advances, there are still concerns about quality, efficacy, and safety. Many fabrication techniques still need to be refined to address the complex structures and non-standard manufacturing processes that can impact the quality of drug delivery systems. Recently, optimization techniques such as Quality by Design (QbD) have gained popularity in the pharmaceutical industry. QbD is a structured approach that addresses many technological and trait-related issues by providing a deep understanding of the product and its operations. This review examines the current state of QbD in the design of various nano-drug delivery systems, including lipid nanoparticles, lipid carriers, nano micelles, beaded drug delivery systems, nanospheres, cubosomes, and novel cosmeceuticals. Various mathematical models and statistical tests have been used to identify the parameters that influence the physical characteristics of these nanosystems. Critical process attributes such as particle size, yield, and drug entrapment have been studied to assess risk factors during development. However, critical process parameters are often identified through trial and error. This review highlights common material attributes and process parameters that affect the quality of nano-drug delivery systems. Hence, this survey has dis.closed the various material attributes and process parameters, quality variables of different nano-drug systems. QbD designs such as Central drug composite, Design of experiment, D-optimal Design, Box-Benkhen Design, and Face center Design in optimizing the nanosystems have also been added. Conclusively, QbD optimization in nano drug delivery systems is expected to be a time-honored strategy in the forthcoming years.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on the Progress of QbD Approach in Nanosystems Optimization: Current Updates and Strategic Applications\",\"authors\":\"Devika Tripathi, Jyoti Kumari, Krislay Rathour, Princy Yadav, Vikas Shukla, Awani Kumar Rai\",\"doi\":\"10.2174/0115701808256947231004110357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Nanotechnology has made great strides in developing targeted drug delivery systems over the past few decades. These systems have garnered attention for their unique biological properties and ability to deliver drugs in a stable and sustainable manner. Despite these advances, there are still concerns about quality, efficacy, and safety. Many fabrication techniques still need to be refined to address the complex structures and non-standard manufacturing processes that can impact the quality of drug delivery systems. Recently, optimization techniques such as Quality by Design (QbD) have gained popularity in the pharmaceutical industry. QbD is a structured approach that addresses many technological and trait-related issues by providing a deep understanding of the product and its operations. This review examines the current state of QbD in the design of various nano-drug delivery systems, including lipid nanoparticles, lipid carriers, nano micelles, beaded drug delivery systems, nanospheres, cubosomes, and novel cosmeceuticals. Various mathematical models and statistical tests have been used to identify the parameters that influence the physical characteristics of these nanosystems. Critical process attributes such as particle size, yield, and drug entrapment have been studied to assess risk factors during development. However, critical process parameters are often identified through trial and error. This review highlights common material attributes and process parameters that affect the quality of nano-drug delivery systems. Hence, this survey has dis.closed the various material attributes and process parameters, quality variables of different nano-drug systems. QbD designs such as Central drug composite, Design of experiment, D-optimal Design, Box-Benkhen Design, and Face center Design in optimizing the nanosystems have also been added. Conclusively, QbD optimization in nano drug delivery systems is expected to be a time-honored strategy in the forthcoming years.\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808256947231004110357\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701808256947231004110357","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在过去的几十年里,纳米技术在开发靶向给药系统方面取得了巨大的进步。这些系统因其独特的生物学特性和以稳定和可持续的方式输送药物的能力而受到关注。尽管取得了这些进步,但仍然存在质量、疗效和安全性方面的担忧。许多制造技术仍然需要改进,以解决复杂的结构和非标准的制造过程,这可能会影响给药系统的质量。近年来,优化技术如设计质量(QbD)在制药行业得到了普及。QbD是一种结构化的方法,通过提供对产品及其操作的深入理解来解决许多技术和特性相关的问题。本文综述了QbD在各种纳米给药系统设计中的现状,包括脂质纳米颗粒、脂质载体、纳米胶束、珠状给药系统、纳米球、立方体体和新型药妆品。已经使用各种数学模型和统计测试来确定影响这些纳米系统物理特性的参数。关键的工艺属性,如粒度,产量和药物夹带已被研究,以评估开发过程中的风险因素。然而,关键的工艺参数往往是通过试验和错误来确定的。本文综述了影响纳米给药系统质量的常见材料属性和工艺参数。因此,本研究揭示了不同纳米药物体系的各种材料属性和工艺参数、质量变量。QbD设计,如中心药物复合设计、实验设计、D-optimal设计、Box-Benkhen设计和Face center设计等,也被添加到优化纳米系统中。综上所述,QbD优化在纳米给药系统中有望在未来几年成为一种长期的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review on the Progress of QbD Approach in Nanosystems Optimization: Current Updates and Strategic Applications
Abstract: Nanotechnology has made great strides in developing targeted drug delivery systems over the past few decades. These systems have garnered attention for their unique biological properties and ability to deliver drugs in a stable and sustainable manner. Despite these advances, there are still concerns about quality, efficacy, and safety. Many fabrication techniques still need to be refined to address the complex structures and non-standard manufacturing processes that can impact the quality of drug delivery systems. Recently, optimization techniques such as Quality by Design (QbD) have gained popularity in the pharmaceutical industry. QbD is a structured approach that addresses many technological and trait-related issues by providing a deep understanding of the product and its operations. This review examines the current state of QbD in the design of various nano-drug delivery systems, including lipid nanoparticles, lipid carriers, nano micelles, beaded drug delivery systems, nanospheres, cubosomes, and novel cosmeceuticals. Various mathematical models and statistical tests have been used to identify the parameters that influence the physical characteristics of these nanosystems. Critical process attributes such as particle size, yield, and drug entrapment have been studied to assess risk factors during development. However, critical process parameters are often identified through trial and error. This review highlights common material attributes and process parameters that affect the quality of nano-drug delivery systems. Hence, this survey has dis.closed the various material attributes and process parameters, quality variables of different nano-drug systems. QbD designs such as Central drug composite, Design of experiment, D-optimal Design, Box-Benkhen Design, and Face center Design in optimizing the nanosystems have also been added. Conclusively, QbD optimization in nano drug delivery systems is expected to be a time-honored strategy in the forthcoming years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
245
审稿时长
3 months
期刊介绍: Aims & Scope Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.
期刊最新文献
Structural Optimization of Quinazolin-4-One Derivatives as Novel SARS-CoV-2 Mpro Inhibitors by Molecular Simulation Therapeutic Potential of Colchicum luteum Against Flagellin (FliC) in Salmonella typhimurium: An In silico Approach The Therapeutic Potential of Ganoderma lucidum Karst and Ziziphus jujuba Mill for Postsurgical Adhesion Band Formation Indirubin as an AHR Ligand: A Combined Network Pharmacology and Experimental Approach to Psoriasis Therapy Exploring New Potential Pkcθ Inhibitors Using Pharmacophore Modeling, Molecular Docking Analysis, and Molecular Dynamics Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1