{"title":"基于改进差分搜索算法的最小群延迟FIR低通滤波器设计","authors":"Sonelal Prajapati, Sanjeev Rai, Manish Tiwari, Atul Kumar Dwivedi","doi":"10.26636/jtit.2023.3.1313","DOIUrl":null,"url":null,"abstract":"Designing a finite impulse response (FIR) filter with minimal group delay has proven to be a difficult task. Many research studies have focused on reducing pass band and stop band ripples in FIR filter design, often overlooking the optimization of group delay. While some works have considered group delay reduction, their approaches were not optimal. Consequently, the achievement of an optimal design for a filter with a low group delay value still remains a challenge. In this work, a modified differential search optimization algorithm has been used for the purpose of designing a minimal group delay FIR filter. The results obtained have been compared with the classical techniques and they turned out to be promising.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimized Group Delay FIR Low Pass Filter Design Using Modified Differential Search Algorithm\",\"authors\":\"Sonelal Prajapati, Sanjeev Rai, Manish Tiwari, Atul Kumar Dwivedi\",\"doi\":\"10.26636/jtit.2023.3.1313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a finite impulse response (FIR) filter with minimal group delay has proven to be a difficult task. Many research studies have focused on reducing pass band and stop band ripples in FIR filter design, often overlooking the optimization of group delay. While some works have considered group delay reduction, their approaches were not optimal. Consequently, the achievement of an optimal design for a filter with a low group delay value still remains a challenge. In this work, a modified differential search optimization algorithm has been used for the purpose of designing a minimal group delay FIR filter. The results obtained have been compared with the classical techniques and they turned out to be promising.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2023.3.1313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2023.3.1313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Minimized Group Delay FIR Low Pass Filter Design Using Modified Differential Search Algorithm
Designing a finite impulse response (FIR) filter with minimal group delay has proven to be a difficult task. Many research studies have focused on reducing pass band and stop band ripples in FIR filter design, often overlooking the optimization of group delay. While some works have considered group delay reduction, their approaches were not optimal. Consequently, the achievement of an optimal design for a filter with a low group delay value still remains a challenge. In this work, a modified differential search optimization algorithm has been used for the purpose of designing a minimal group delay FIR filter. The results obtained have been compared with the classical techniques and they turned out to be promising.