基于皮肤表面反射和神经网络的微波乳房成像复介电常数重建

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2023-10-16 DOI:10.1109/JERM.2023.3321423
Peixian Zhu;Shouhei Kidera
{"title":"基于皮肤表面反射和神经网络的微波乳房成像复介电常数重建","authors":"Peixian Zhu;Shouhei Kidera","doi":"10.1109/JERM.2023.3321423","DOIUrl":null,"url":null,"abstract":"This study introduces an experimental validation for the complex permittivity profile reconstruction using the multi-layer perceptron (MLP) neural network (NN) approach for quantitative microwave recognition of breast cancer. A direct conversion from the four-dimensional scattered data to the complex permittivity three-dimensional profile can be achieved by combining the MLP-NN and the skin surface rejection preprocessing. The experimental data, measured by ultra-wideband radar equipment using a simplified breast phantom, validates that our approach provides both the real and imaginary parts of complex permittivity profiles, even when using limited numbers of training datasets.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"425-431"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Permittivity Reconstruction Using Skin Surface Reflection and Neural Network for Microwave Breast Imaging\",\"authors\":\"Peixian Zhu;Shouhei Kidera\",\"doi\":\"10.1109/JERM.2023.3321423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an experimental validation for the complex permittivity profile reconstruction using the multi-layer perceptron (MLP) neural network (NN) approach for quantitative microwave recognition of breast cancer. A direct conversion from the four-dimensional scattered data to the complex permittivity three-dimensional profile can be achieved by combining the MLP-NN and the skin surface rejection preprocessing. The experimental data, measured by ultra-wideband radar equipment using a simplified breast phantom, validates that our approach provides both the real and imaginary parts of complex permittivity profiles, even when using limited numbers of training datasets.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 4\",\"pages\":\"425-431\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10286040/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10286040/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用多层感知器(MLP)神经网络(NN)方法重建复杂介电常数剖面的实验验证方法,用于乳腺癌的定量微波识别。将MLP-NN与蒙皮表面抑制预处理相结合,可以实现从四维散射数据到复杂介电常数三维剖面的直接转换。实验数据由超宽带雷达设备使用简化的乳房幻影测量,验证了我们的方法即使在使用有限数量的训练数据集时也能提供复杂介电常数曲线的实部和虚部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex Permittivity Reconstruction Using Skin Surface Reflection and Neural Network for Microwave Breast Imaging
This study introduces an experimental validation for the complex permittivity profile reconstruction using the multi-layer perceptron (MLP) neural network (NN) approach for quantitative microwave recognition of breast cancer. A direct conversion from the four-dimensional scattered data to the complex permittivity three-dimensional profile can be achieved by combining the MLP-NN and the skin surface rejection preprocessing. The experimental data, measured by ultra-wideband radar equipment using a simplified breast phantom, validates that our approach provides both the real and imaginary parts of complex permittivity profiles, even when using limited numbers of training datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1