基于智能最优特征选择的混合变分自编码器和块递归变压器网络用于脑电信号的精确情绪识别模型

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Image and Video Processing Pub Date : 2023-10-26 DOI:10.1007/s11760-023-02702-z
C. H. Narsimha Reddy, Shanthi Mahesh, K. Manjunathachari
{"title":"基于智能最优特征选择的混合变分自编码器和块递归变压器网络用于脑电信号的精确情绪识别模型","authors":"C. H. Narsimha Reddy, Shanthi Mahesh, K. Manjunathachari","doi":"10.1007/s11760-023-02702-z","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"33 4","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent optimal feature selection-based hybrid variational autoencoder and block recurrent transformer network for accurate emotion recognition model using EEG signals\",\"authors\":\"C. H. Narsimha Reddy, Shanthi Mahesh, K. Manjunathachari\",\"doi\":\"10.1007/s11760-023-02702-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54393,\"journal\":{\"name\":\"Signal Image and Video Processing\",\"volume\":\"33 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11760-023-02702-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11760-023-02702-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent optimal feature selection-based hybrid variational autoencoder and block recurrent transformer network for accurate emotion recognition model using EEG signals
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Image and Video Processing
Signal Image and Video Processing ENGINEERING, ELECTRICAL & ELECTRONIC-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.80
自引率
8.70%
发文量
328
审稿时长
6 months
期刊介绍: The journal is an interdisciplinary journal presenting the theory and practice of signal, image and video processing. It aims at: - Disseminating high level research results and engineering developments to all signal, image or video processing researchers and research groups. - Presenting practical solutions for the current signal, image and video processing problems in Engineering and Science. Subject areas covered by the journal include but are not limited to: Adaptive processing – biomedical signal processing – multimedia signal processing – communication signal processing – non-linear signal processing – array processing – statistics and statistical signal processing – modeling – filtering – data science – graph signal processing – multi-resolution signal analysis and wavelets – segmentation – coding – restoration – enhancement – storage and retrieval – colour and multi-spectral processing – scanning – displaying – printing – interpolation – image processing - video processing-motion detection and estimation – stereoscopic processing – image and video coding.
期刊最新文献
A multi-attention Uformer for low-dose CT image denoising Efficient luma modification-based chroma down-sampling and novel luma down-sampling with adaptive interpolation A principal component fusion-based thresholded bin-stretching for CT image enhancement HFRAS: design of a high-density feature representation model for effective augmentation of satellite images LocMix: local saliency-based data augmentation for image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1