首页 > 最新文献

Signal Image and Video Processing最新文献

英文 中文
A multi-attention Uformer for low-dose CT image denoising 一种用于低剂量CT图像去噪的多注意力增强器
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-14 DOI: 10.1007/s11760-023-02853-z
Huimin Yan, Chenyun Fang, Zhiwei Qiao
{"title":"A multi-attention Uformer for low-dose CT image denoising","authors":"Huimin Yan, Chenyun Fang, Zhiwei Qiao","doi":"10.1007/s11760-023-02853-z","DOIUrl":"https://doi.org/10.1007/s11760-023-02853-z","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"10 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient luma modification-based chroma down-sampling and novel luma down-sampling with adaptive interpolation 基于亮度修正的高效色度下采样和基于自适应插值的新型色度下采样
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-13 DOI: 10.1007/s11760-023-02814-6
A. Ahilan, B. Pradeep Khanth, R. Ezhilarasi, N. Muthukumaran
{"title":"Efficient luma modification-based chroma down-sampling and novel luma down-sampling with adaptive interpolation","authors":"A. Ahilan, B. Pradeep Khanth, R. Ezhilarasi, N. Muthukumaran","doi":"10.1007/s11760-023-02814-6","DOIUrl":"https://doi.org/10.1007/s11760-023-02814-6","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"38 25","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136281505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A principal component fusion-based thresholded bin-stretching for CT image enhancement 基于主成分融合的CT图像阈值拉伸增强
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-12 DOI: 10.1007/s11760-023-02839-x
Sonu Kumar, Ashish Kumar Bhandari
{"title":"A principal component fusion-based thresholded bin-stretching for CT image enhancement","authors":"Sonu Kumar, Ashish Kumar Bhandari","doi":"10.1007/s11760-023-02839-x","DOIUrl":"https://doi.org/10.1007/s11760-023-02839-x","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"50 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HFRAS: design of a high-density feature representation model for effective augmentation of satellite images HFRAS:为有效增强卫星图像而设计的高密度特征表示模型
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02859-7
Dipen Saini, Rachit Garg, Rahul Malik, Deepak Prashar, M. Faheem
Abstract Efficiently extracting features from satellite images is crucial for classification and post-processing activities. Many feature representation models have been created for this purpose. However, most of them either increase computational complexity or decrease classification efficiency. The proposed model in this paper initially collects a set of available satellite images and represents them via a hybrid of long short-term memory (LSTM) and gated recurrent unit (GRU) features. These features are processed via an iterative genetic algorithm, identifying optimal augmentation methods for the extracted feature sets. To analyse the efficiency of this optimization process, we model an iterative fitness function that assists in incrementally improving the classification process. The fitness function uses an accuracy & precision-based feedback mechanism, which helps in tuning the hyperparameters of the proposed LSTM & GRU feature extraction process. The suggested model used 100 k images, 60% allocated for training and 20% each designated for validation and testing purposes. The proposed model can increase classification precision by 16.1% and accuracy by 17.1% compared to conventional augmentation strategies. The model also showcased incremental accuracy enhancements for an increasing number of training image sets.
摘要有效地提取卫星图像的特征对分类和后处理至关重要。为此目的创建了许多特征表示模型。然而,大多数方法要么增加了计算复杂度,要么降低了分类效率。本文提出的模型首先收集一组可用的卫星图像,并通过长短期记忆(LSTM)和门控循环单元(GRU)特征的混合表示它们。通过迭代遗传算法对这些特征进行处理,确定提取特征集的最佳增强方法。为了分析这个优化过程的效率,我们建立了一个迭代适应度函数模型,帮助逐步改进分类过程。适应度函数使用精度&基于精度的反馈机制,这有助于调整所提出的LSTM的超参数;GRU特征提取过程。建议的模型使用了100 k张图像,其中60%用于训练,20%用于验证和测试。与传统的增强策略相比,该模型的分类精度提高了16.1%,准确率提高了17.1%。该模型还显示了对越来越多的训练图像集的增量精度增强。
{"title":"HFRAS: design of a high-density feature representation model for effective augmentation of satellite images","authors":"Dipen Saini, Rachit Garg, Rahul Malik, Deepak Prashar, M. Faheem","doi":"10.1007/s11760-023-02859-7","DOIUrl":"https://doi.org/10.1007/s11760-023-02859-7","url":null,"abstract":"Abstract Efficiently extracting features from satellite images is crucial for classification and post-processing activities. Many feature representation models have been created for this purpose. However, most of them either increase computational complexity or decrease classification efficiency. The proposed model in this paper initially collects a set of available satellite images and represents them via a hybrid of long short-term memory (LSTM) and gated recurrent unit (GRU) features. These features are processed via an iterative genetic algorithm, identifying optimal augmentation methods for the extracted feature sets. To analyse the efficiency of this optimization process, we model an iterative fitness function that assists in incrementally improving the classification process. The fitness function uses an accuracy & precision-based feedback mechanism, which helps in tuning the hyperparameters of the proposed LSTM & GRU feature extraction process. The suggested model used 100 k images, 60% allocated for training and 20% each designated for validation and testing purposes. The proposed model can increase classification precision by 16.1% and accuracy by 17.1% compared to conventional augmentation strategies. The model also showcased incremental accuracy enhancements for an increasing number of training image sets.","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"32 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135041782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving speech command recognition through decision-level fusion of deep filtered speech cues 通过深度过滤语音线索的决策级融合改进语音命令识别
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02845-z
Sunakshi Mehra, Virender Ranga, Ritu Agarwal
{"title":"Improving speech command recognition through decision-level fusion of deep filtered speech cues","authors":"Sunakshi Mehra, Virender Ranga, Ritu Agarwal","doi":"10.1007/s11760-023-02845-z","DOIUrl":"https://doi.org/10.1007/s11760-023-02845-z","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"47 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer vision-based approach for skeleton-based action recognition, SAHC 基于骨骼的动作识别的计算机视觉方法
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02829-z
M. Shujah Islam
{"title":"Computer vision-based approach for skeleton-based action recognition, SAHC","authors":"M. Shujah Islam","doi":"10.1007/s11760-023-02829-z","DOIUrl":"https://doi.org/10.1007/s11760-023-02829-z","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"28 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135043200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OpenFE: feature-extended OpenMax for open set facial expression recognition OpenFE:功能扩展的OpenMax,用于开放集面部表情识别
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02843-1
Jie Shao, Zicheng Song, Jiacheng Wu, Wenzhong Shen
{"title":"OpenFE: feature-extended OpenMax for open set facial expression recognition","authors":"Jie Shao, Zicheng Song, Jiacheng Wu, Wenzhong Shen","doi":"10.1007/s11760-023-02843-1","DOIUrl":"https://doi.org/10.1007/s11760-023-02843-1","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"13 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135087212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep multi-convolutional stacked capsule network fostered human gait recognition from enhanced gait energy image 深度多卷积堆叠胶囊网络从增强的步态能量图像中培养人体步态识别
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02851-1
P. Nithyakani, M. Ferni Ukrit
{"title":"Deep multi-convolutional stacked capsule network fostered human gait recognition from enhanced gait energy image","authors":"P. Nithyakani, M. Ferni Ukrit","doi":"10.1007/s11760-023-02851-1","DOIUrl":"https://doi.org/10.1007/s11760-023-02851-1","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"36 25","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LocMix: local saliency-based data augmentation for image classification LocMix:基于局部显著性的图像分类数据增强
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-11 DOI: 10.1007/s11760-023-02852-0
Lingyu Yan, Yu Ye, Chunzhi Wang, Yun Sun
{"title":"LocMix: local saliency-based data augmentation for image classification","authors":"Lingyu Yan, Yu Ye, Chunzhi Wang, Yun Sun","doi":"10.1007/s11760-023-02852-0","DOIUrl":"https://doi.org/10.1007/s11760-023-02852-0","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"3 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive graphical routing methodology for reducing traffic overhead in wireless sensor networks 减少无线传感器网络通信量开销的自适应图形路由方法
4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-10 DOI: 10.1007/s11760-023-02834-2
C. Sureshkumar, S. Sabena, L. Sai Ramesh
{"title":"Adaptive graphical routing methodology for reducing traffic overhead in wireless sensor networks","authors":"C. Sureshkumar, S. Sabena, L. Sai Ramesh","doi":"10.1007/s11760-023-02834-2","DOIUrl":"https://doi.org/10.1007/s11760-023-02834-2","url":null,"abstract":"","PeriodicalId":54393,"journal":{"name":"Signal Image and Video Processing","volume":"121 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Signal Image and Video Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1