Ming Liu, Yongchao Yu, Rong Jin, Peng Zhao, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Zhonghou Tang
{"title":"外源IAA通过调控根系响应策略提高甘薯的低钾耐受性","authors":"Ming Liu, Yongchao Yu, Rong Jin, Peng Zhao, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Zhonghou Tang","doi":"10.1080/03650340.2023.2269851","DOIUrl":null,"url":null,"abstract":"Plant roots are sensitive to potassium (K+) deficiency signals. Therefore, regulating root growth by exogenous methods is a vital strategy to improve low K+ tolerance of sweetpotato. We studied the effects of exogenous indole-3-acetic acid (IAA) on growth, K+ absorption, and root characteristics in sweetpotato exposed to low K+ treatment (LK). LK significantly inhibited dry mass, K+ concentration and accumulation, as well as the root elongation (length) and branching (forks and crossings) in sweetpotato seedlings. However, exogenous IAA increased the length, ratio, and density of lateral roots and promoted absorption and accumulation of K+, which effectively alleviated the inhibitory effect of low K+. Exogenous IAA also increased the expression levels of auxin synthesis (IbYUC6 and IbTAR2) and transport (IbPIN1, IbPIN3, and IbPIN8) genes in leaves and roots, which promoted the increase of endogenous IAA content. Furthermore, exogenous IAA was more effective on low-K-tolerant variety (XS32) than low-K-sensitive variety (NZ1) under LK stress, depending on their different IAA synthesis and transport strategies. These results indicated that exogenous IAA enhanced root responsiveness of sweetpotato to low K+ stress by modulating auxin biosynthesis and transport, thereby improving the tolerance of sweetpotato to low K+ stress.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"71 5","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous IAA enhances low potassium tolerance of sweetpotato by regulating root response strategy\",\"authors\":\"Ming Liu, Yongchao Yu, Rong Jin, Peng Zhao, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Zhonghou Tang\",\"doi\":\"10.1080/03650340.2023.2269851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant roots are sensitive to potassium (K+) deficiency signals. Therefore, regulating root growth by exogenous methods is a vital strategy to improve low K+ tolerance of sweetpotato. We studied the effects of exogenous indole-3-acetic acid (IAA) on growth, K+ absorption, and root characteristics in sweetpotato exposed to low K+ treatment (LK). LK significantly inhibited dry mass, K+ concentration and accumulation, as well as the root elongation (length) and branching (forks and crossings) in sweetpotato seedlings. However, exogenous IAA increased the length, ratio, and density of lateral roots and promoted absorption and accumulation of K+, which effectively alleviated the inhibitory effect of low K+. Exogenous IAA also increased the expression levels of auxin synthesis (IbYUC6 and IbTAR2) and transport (IbPIN1, IbPIN3, and IbPIN8) genes in leaves and roots, which promoted the increase of endogenous IAA content. Furthermore, exogenous IAA was more effective on low-K-tolerant variety (XS32) than low-K-sensitive variety (NZ1) under LK stress, depending on their different IAA synthesis and transport strategies. These results indicated that exogenous IAA enhanced root responsiveness of sweetpotato to low K+ stress by modulating auxin biosynthesis and transport, thereby improving the tolerance of sweetpotato to low K+ stress.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"71 5\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2269851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2269851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exogenous IAA enhances low potassium tolerance of sweetpotato by regulating root response strategy
Plant roots are sensitive to potassium (K+) deficiency signals. Therefore, regulating root growth by exogenous methods is a vital strategy to improve low K+ tolerance of sweetpotato. We studied the effects of exogenous indole-3-acetic acid (IAA) on growth, K+ absorption, and root characteristics in sweetpotato exposed to low K+ treatment (LK). LK significantly inhibited dry mass, K+ concentration and accumulation, as well as the root elongation (length) and branching (forks and crossings) in sweetpotato seedlings. However, exogenous IAA increased the length, ratio, and density of lateral roots and promoted absorption and accumulation of K+, which effectively alleviated the inhibitory effect of low K+. Exogenous IAA also increased the expression levels of auxin synthesis (IbYUC6 and IbTAR2) and transport (IbPIN1, IbPIN3, and IbPIN8) genes in leaves and roots, which promoted the increase of endogenous IAA content. Furthermore, exogenous IAA was more effective on low-K-tolerant variety (XS32) than low-K-sensitive variety (NZ1) under LK stress, depending on their different IAA synthesis and transport strategies. These results indicated that exogenous IAA enhanced root responsiveness of sweetpotato to low K+ stress by modulating auxin biosynthesis and transport, thereby improving the tolerance of sweetpotato to low K+ stress.