概率区间排序优先平均算子及其在银行投资决策中的应用

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED Axioms Pub Date : 2023-10-26 DOI:10.3390/axioms12111007
Chuanyang Ruan, Shicheng Gong, Xiangjing Chen
{"title":"概率区间排序优先平均算子及其在银行投资决策中的应用","authors":"Chuanyang Ruan, Shicheng Gong, Xiangjing Chen","doi":"10.3390/axioms12111007","DOIUrl":null,"url":null,"abstract":"Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"36 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Interval Ordering Prioritized Averaging Operator and Its Application in Bank Investment Decision Making\",\"authors\":\"Chuanyang Ruan, Shicheng Gong, Xiangjing Chen\",\"doi\":\"10.3390/axioms12111007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12111007\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

概率区间排序作为一种表达正、负信息的有效工具,可以有效地解决现实中的多属性决策问题。然而,在处理大量的决策者和决策属性时,往往忽略了不同属性之间的优先级关系及其相对重要性,从而导致决策结果的偏差。因此,本文结合概率区间排序、优先聚合算子(PA)和Gauss-Legendre算法来解决具有优先属性的MADM问题。首先,考虑到区间优先排序的重要性和属性优先级的分布特点,引入了包含属性优先级的概率区间排序元素,提出了概率区间排序优先平均算子(PIOPA)。然后,基于高斯-勒让德算法定义了概率区间排序高斯-勒让德优先平均算子(PIOGPA),并探讨了该算子的各种优良性质。该算子考虑了属性之间的优先级关系及其重要程度,使其更有能力处理不确定性。最后,在PIOGPA算子的基础上,利用概率区间构造了一种新的MADM方法,并采用算术-几何平均(AGM)算法计算各属性的权重。通过数值算例和对比分析,验证了所提方法的可行性和合理性。本文引入的MADM方法对优先级较高的属性赋予较高的权重,建立固定的属性权重,减少了其他属性对决策结果的影响。利用高斯AGM算法简化了计算复杂度,提高了决策效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Interval Ordering Prioritized Averaging Operator and Its Application in Bank Investment Decision Making
Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
期刊最新文献
Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model Results of Third-Order Strong Differential Subordinations A Probabilistic Physico-Chemical Diffusion Model of the Key Drifting Parameter of Measuring Equipment Finite-Time Passivity and Synchronization for a Class of Fuzzy Inertial Complex-Valued Neural Networks with Time-Varying Delays Integer-Valued Split-BREAK Process with a General Family of Innovations and Application to Accident Count Data Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1