Emad Ali, Jamel Orfi, Hany AlAnsary, Saleh Baakeem, Ahmad S Alsaadi, Noreddine Ghaffour
{"title":"混合反相多级闪蒸-膜蒸馏海水淡化系统的概念与分析。","authors":"Emad Ali, Jamel Orfi, Hany AlAnsary, Saleh Baakeem, Ahmad S Alsaadi, Noreddine Ghaffour","doi":"10.1080/09593330.2023.2284688","DOIUrl":null,"url":null,"abstract":"<p><p>The concept and analysis of integrating membrane distillations (MD) with reversal once-through Multistage Flash (RV-MSF) desalination is presented. The analysis is based on numerical simulation. The MD vessels are integrated into the terminal ends of the RV-MSF system to leverage the thermal energy associated with these terminal streams. Hybridisation at the last MSF stage, i.e. by replacing the brine cooler, contributes marginally to the overall production rate which amounts to 2%. However, it is found that hybridisation at stage one, i.e. utilising the energy of the MSF reject brine can increase the overall production rate by 65%. For seawater feed temperature of 80 <sup>o</sup>C and 24 MSF stages, 5 MD vessels in series can be integrated with the RV-MSF process. This ultimate hybridisation helped improve the recovery ratio from 7 to 23%, decreasing the specific cooling water requirement from 23 to 12 kg/kg and reducing the specific energy consumption from 129 to 41 kWh/m<sup>3</sup> with respect to the stand-alone RV-MSF system. However, this achievement incurs an additional specific area for heat transfer which increased from 29 to 65 m<sup>2</sup>/(kg/s). This is because a large number of MD modules are incorporated into the hybridisation.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"5218-5231"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concept and analysis of hybrid reversal multi-stage flash and membrane distillation desalination system.\",\"authors\":\"Emad Ali, Jamel Orfi, Hany AlAnsary, Saleh Baakeem, Ahmad S Alsaadi, Noreddine Ghaffour\",\"doi\":\"10.1080/09593330.2023.2284688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The concept and analysis of integrating membrane distillations (MD) with reversal once-through Multistage Flash (RV-MSF) desalination is presented. The analysis is based on numerical simulation. The MD vessels are integrated into the terminal ends of the RV-MSF system to leverage the thermal energy associated with these terminal streams. Hybridisation at the last MSF stage, i.e. by replacing the brine cooler, contributes marginally to the overall production rate which amounts to 2%. However, it is found that hybridisation at stage one, i.e. utilising the energy of the MSF reject brine can increase the overall production rate by 65%. For seawater feed temperature of 80 <sup>o</sup>C and 24 MSF stages, 5 MD vessels in series can be integrated with the RV-MSF process. This ultimate hybridisation helped improve the recovery ratio from 7 to 23%, decreasing the specific cooling water requirement from 23 to 12 kg/kg and reducing the specific energy consumption from 129 to 41 kWh/m<sup>3</sup> with respect to the stand-alone RV-MSF system. However, this achievement incurs an additional specific area for heat transfer which increased from 29 to 65 m<sup>2</sup>/(kg/s). This is because a large number of MD modules are incorporated into the hybridisation.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"5218-5231\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2023.2284688\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2023.2284688","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Concept and analysis of hybrid reversal multi-stage flash and membrane distillation desalination system.
The concept and analysis of integrating membrane distillations (MD) with reversal once-through Multistage Flash (RV-MSF) desalination is presented. The analysis is based on numerical simulation. The MD vessels are integrated into the terminal ends of the RV-MSF system to leverage the thermal energy associated with these terminal streams. Hybridisation at the last MSF stage, i.e. by replacing the brine cooler, contributes marginally to the overall production rate which amounts to 2%. However, it is found that hybridisation at stage one, i.e. utilising the energy of the MSF reject brine can increase the overall production rate by 65%. For seawater feed temperature of 80 oC and 24 MSF stages, 5 MD vessels in series can be integrated with the RV-MSF process. This ultimate hybridisation helped improve the recovery ratio from 7 to 23%, decreasing the specific cooling water requirement from 23 to 12 kg/kg and reducing the specific energy consumption from 129 to 41 kWh/m3 with respect to the stand-alone RV-MSF system. However, this achievement incurs an additional specific area for heat transfer which increased from 29 to 65 m2/(kg/s). This is because a large number of MD modules are incorporated into the hybridisation.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current