一种新的CTC1突变导致中国间质性肺疾病家族的端粒缩短。

IF 2.7 3区 生物学 Hereditas Pub Date : 2023-11-18 DOI:10.1186/s41065-023-00299-4
Lv Liu, Hua Luo, Yue Sheng, Xi Kang, Hong Peng, Hong Luo, Liang-Liang Fan
{"title":"一种新的CTC1突变导致中国间质性肺疾病家族的端粒缩短。","authors":"Lv Liu, Hua Luo, Yue Sheng, Xi Kang, Hong Peng, Hong Luo, Liang-Liang Fan","doi":"10.1186/s41065-023-00299-4","DOIUrl":null,"url":null,"abstract":"<p><p>Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656953/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel mutation of CTC1 leads to telomere shortening in a chinese family with interstitial lung disease.\",\"authors\":\"Lv Liu, Hua Luo, Yue Sheng, Xi Kang, Hong Peng, Hong Luo, Liang-Liang Fan\",\"doi\":\"10.1186/s41065-023-00299-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-023-00299-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-023-00299-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

间质性肺疾病(ILDs)或弥漫性肺疾病是肺部疾病的一个子集,主要影响肺泡和间质组织和细支气管周围的空间。临床表现为进行性呼吸困难,患者常表现为不同程度的肺弥散功能下降。近年来,端粒生物学相关基因的变异已被确定为ILDs的遗传病变。在这里,我们招募了82例2017 - 2021年在我院就诊的间质性肺炎患者,通过全外显子组测序来探索这些患者的候选基因突变。经过数据筛选,在两个受影响的家庭成员中鉴定出一种新的CTC1杂合突变(NM_025099: p.Gly131Arg)。作为CST (CTC1- stn1 - ten1)复合物的一个组成部分,CTC1负责维持端粒结构的完整性,也被确定为IPF的候选基因,IPF是一种特殊的慢性ILD,发病隐匿。同时,real-time PCR显示,两名受影响的家族成员端粒长度较短,进一步证实了CTC1基因突变的作用。我们的研究不仅扩大了CTC1的突变谱,提供了CTC1突变引起ILDs的流行病学数据,而且进一步证实了CTC1杂合突变与ILDs之间的关系,这可能有助于进一步了解ILDs的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel mutation of CTC1 leads to telomere shortening in a chinese family with interstitial lung disease.

Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
期刊最新文献
Hypermethylation of the sodium channel beta subunit gene promoter is associated with colorectal cancer. Comprehensive analysis of a necroptosis-associated diagnostic signature for myelodysplastic syndromes based on single-cell RNA-seq and bulk RNA-seq. The Jan Sjödin faba bean mutant collection: morphological and molecular characterization. Identification of necroptosis genes and characterization of immune infiltration in non-alcoholic steatohepatitis. A novel approach for breast cancer treatment: the multifaceted antitumor effects of rMeV-Hu191.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1