胞质核酸感知和线粒体转录组变化是db/db小鼠代谢性疾病的早期诱因

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2024-03-01 Epub Date: 2023-11-18 DOI:10.1007/s00335-023-10026-z
Agnieszka H Ludwig-Słomczyńska, Michał T Seweryn, Jerzy Wiater, Agnieszka Borys, Anna Ledwoń, Magdalena Druszczyńska, Magdalena Łabieniec-Watała, Grzegorz J Lis, Paweł P Wołkow
{"title":"胞质核酸感知和线粒体转录组变化是db/db小鼠代谢性疾病的早期诱因","authors":"Agnieszka H Ludwig-Słomczyńska, Michał T Seweryn, Jerzy Wiater, Agnieszka Borys, Anna Ledwoń, Magdalena Druszczyńska, Magdalena Łabieniec-Watała, Grzegorz J Lis, Paweł P Wołkow","doi":"10.1007/s00335-023-10026-z","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models of diabetes, such as db/db mice, are a useful tool for deciphering the genetic background of molecular changes at the initial stages of disease development. Our goal was to find early transcriptomic changes in three tissues involved in metabolism regulation in db/db mice: adipose tissue, muscle tissue and liver tissue. Nine animals (three per time point) were studied. Tissues were collected at 8, 12 and 16 weeks of age. Transcriptome-wide analysis was performed using mRNA-seq. Libraries were sequenced on NextSeq (Illumina). Differential expression (DE) analysis was performed with edgeR. The analysis of the gene expression profile shared by all three tissues revealed eight upregulated genes (Irf7, Sp100, Neb, Stat2, Oas2, Rtp4, H2-T24 and Oasl2) as early as between 8 and 12 weeks of age. The most pronounced differences were found in liver tissue: nine DE genes between 8 and 12 weeks of age (Irf7, Ly6a, Ly6g6d, H2-Dma, Pld4, Ly86, Fcer1g, Ly6e and Idi1) and five between 12 and 16 weeks of age (Irf7, Plac8, Ifi44, Xaf1 and Ly6a) (adj. p-value < 0.05). The mitochondrial transcriptomic profile also changed with time: we found two downregulated genes in mice between 8 and 12 weeks old (Ckmt2 and Cox6a2) and five DE genes between 12 and 16 weeks of age (Mavs, Tomm40L, Mtfp1, Ckmt2 and Cox6a2). The KEGG pathway analysis showed significant enrichment in pathways related to the autoimmune response and cytosolic DNA sensing. Our results suggest an important involvement of the immunological response, mainly cytosolic nucleic acid sensing, and mitochondrial signalling in the early stages of diabetes and obesity.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cytosolic nucleic acid sensing and mitochondrial transcriptomic changes as early triggers of metabolic disease in db/db mice.\",\"authors\":\"Agnieszka H Ludwig-Słomczyńska, Michał T Seweryn, Jerzy Wiater, Agnieszka Borys, Anna Ledwoń, Magdalena Druszczyńska, Magdalena Łabieniec-Watała, Grzegorz J Lis, Paweł P Wołkow\",\"doi\":\"10.1007/s00335-023-10026-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal models of diabetes, such as db/db mice, are a useful tool for deciphering the genetic background of molecular changes at the initial stages of disease development. Our goal was to find early transcriptomic changes in three tissues involved in metabolism regulation in db/db mice: adipose tissue, muscle tissue and liver tissue. Nine animals (three per time point) were studied. Tissues were collected at 8, 12 and 16 weeks of age. Transcriptome-wide analysis was performed using mRNA-seq. Libraries were sequenced on NextSeq (Illumina). Differential expression (DE) analysis was performed with edgeR. The analysis of the gene expression profile shared by all three tissues revealed eight upregulated genes (Irf7, Sp100, Neb, Stat2, Oas2, Rtp4, H2-T24 and Oasl2) as early as between 8 and 12 weeks of age. The most pronounced differences were found in liver tissue: nine DE genes between 8 and 12 weeks of age (Irf7, Ly6a, Ly6g6d, H2-Dma, Pld4, Ly86, Fcer1g, Ly6e and Idi1) and five between 12 and 16 weeks of age (Irf7, Plac8, Ifi44, Xaf1 and Ly6a) (adj. p-value < 0.05). The mitochondrial transcriptomic profile also changed with time: we found two downregulated genes in mice between 8 and 12 weeks old (Ckmt2 and Cox6a2) and five DE genes between 12 and 16 weeks of age (Mavs, Tomm40L, Mtfp1, Ckmt2 and Cox6a2). The KEGG pathway analysis showed significant enrichment in pathways related to the autoimmune response and cytosolic DNA sensing. Our results suggest an important involvement of the immunological response, mainly cytosolic nucleic acid sensing, and mitochondrial signalling in the early stages of diabetes and obesity.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-023-10026-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-10026-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病的动物模型,如db/db小鼠,是破译疾病发展初始阶段分子变化的遗传背景的有用工具。我们的目标是发现db/db小鼠参与代谢调节的三种组织的早期转录组变化:脂肪组织、肌肉组织和肝组织。9只动物(每个时间点3只)被研究。分别于8、12、16周龄采集组织。使用mRNA-seq进行转录组分析。文库在NextSeq (Illumina)上测序。用edgeR进行差异表达(DE)分析。三种组织共有的基因表达谱分析显示,早在8 - 12周龄之间,8个基因(Irf7、Sp100、Neb、Stat2、Oas2、Rtp4、H2-T24和Oasl2)就上调了。肝组织中差异最显著:8 - 12周龄的9个DE基因(Irf7、Ly6a、Ly6g6d、H2-Dma、Pld4、Ly86、Fcer1g、Ly6e和Idi1)和12 - 16周龄的5个DE基因(Irf7、Plac8、Ifi44、Xaf1和Ly6a) (adj. p-value)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cytosolic nucleic acid sensing and mitochondrial transcriptomic changes as early triggers of metabolic disease in db/db mice.

Animal models of diabetes, such as db/db mice, are a useful tool for deciphering the genetic background of molecular changes at the initial stages of disease development. Our goal was to find early transcriptomic changes in three tissues involved in metabolism regulation in db/db mice: adipose tissue, muscle tissue and liver tissue. Nine animals (three per time point) were studied. Tissues were collected at 8, 12 and 16 weeks of age. Transcriptome-wide analysis was performed using mRNA-seq. Libraries were sequenced on NextSeq (Illumina). Differential expression (DE) analysis was performed with edgeR. The analysis of the gene expression profile shared by all three tissues revealed eight upregulated genes (Irf7, Sp100, Neb, Stat2, Oas2, Rtp4, H2-T24 and Oasl2) as early as between 8 and 12 weeks of age. The most pronounced differences were found in liver tissue: nine DE genes between 8 and 12 weeks of age (Irf7, Ly6a, Ly6g6d, H2-Dma, Pld4, Ly86, Fcer1g, Ly6e and Idi1) and five between 12 and 16 weeks of age (Irf7, Plac8, Ifi44, Xaf1 and Ly6a) (adj. p-value < 0.05). The mitochondrial transcriptomic profile also changed with time: we found two downregulated genes in mice between 8 and 12 weeks old (Ckmt2 and Cox6a2) and five DE genes between 12 and 16 weeks of age (Mavs, Tomm40L, Mtfp1, Ckmt2 and Cox6a2). The KEGG pathway analysis showed significant enrichment in pathways related to the autoimmune response and cytosolic DNA sensing. Our results suggest an important involvement of the immunological response, mainly cytosolic nucleic acid sensing, and mitochondrial signalling in the early stages of diabetes and obesity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1