(m) rvd - hempressin (α)改善东莨菪碱诱导的HT22细胞氧化应激、凋亡和BDNF/TrkB/Akt通路损伤。

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-01 Epub Date: 2023-11-16 DOI:10.1007/s12640-023-00677-w
Ruisan Zhang, Xinliang He, Jianghong Cheng, Xiaofan Zhang, Chen Han, Yifan Liu, Peng Chen, Yang Wang
{"title":"(m) rvd - hempressin (α)改善东莨菪碱诱导的HT22细胞氧化应激、凋亡和BDNF/TrkB/Akt通路损伤。","authors":"Ruisan Zhang, Xinliang He, Jianghong Cheng, Xiaofan Zhang, Chen Han, Yifan Liu, Peng Chen, Yang Wang","doi":"10.1007/s12640-023-00677-w","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"627-637"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells.\",\"authors\":\"Ruisan Zhang, Xinliang He, Jianghong Cheng, Xiaofan Zhang, Chen Han, Yifan Liu, Peng Chen, Yang Wang\",\"doi\":\"10.1007/s12640-023-00677-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\" \",\"pages\":\"627-637\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-023-00677-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00677-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胆碱能系统功能障碍与氧化应激密切相关,并在阿尔茨海默病(AD)中发挥作用。东莨菪碱(scopp)通常用于诱导细胞和动物的胆碱能系统损伤,也会引起氧化应激。我们之前的研究表明肽(m) RVD- hempressin (RVD)通过激活大麻素受体1 (CBR1)逆转scopp对小鼠的记忆损害作用,但其机制尚不清楚。在本研究中,我们发现RVD可以抑制Scop诱导的HT22细胞氧化应激、细胞凋亡、细胞活力降低和突触相关蛋白下调。这种作用与BDNF/TrkB/Akt通路有关,上述RVD的作用可以被CBR1拮抗剂阻断。这些结果表明,RVD可能是一种潜在的候选药物,用于治疗与胆碱能系统损伤和氧化应激相关的疾病,如AD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells.

Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1