{"title":"阿尔法(多样性)村永远年轻:限制肠道微生物群成熟阻碍免疫系统发育并增加对感染的易感性。","authors":"Dorrian G Cohen, Rebecca A Wingert","doi":"10.1080/21688370.2023.2281209","DOIUrl":null,"url":null,"abstract":"<p><p>The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forever young by Alpha(diversity)ville: restricting intestinal microbiome maturation stunts immune system development and increases susceptibility to infection.\",\"authors\":\"Dorrian G Cohen, Rebecca A Wingert\",\"doi\":\"10.1080/21688370.2023.2281209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2023.2281209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2023.2281209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Forever young by Alpha(diversity)ville: restricting intestinal microbiome maturation stunts immune system development and increases susceptibility to infection.
The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.