Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone
{"title":"随机生存森林预测轻度认知障碍向阿尔茨海默病转化风险的可解释性","authors":"Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone","doi":"10.1186/s40708-023-00211-w","DOIUrl":null,"url":null,"abstract":"<p><p>Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease.\",\"authors\":\"Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone\",\"doi\":\"10.1186/s40708-023-00211-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00211-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00211-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease.
Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing