随机生存森林预测轻度认知障碍向阿尔茨海默病转化风险的可解释性

Q1 Computer Science Brain Informatics Pub Date : 2023-11-18 DOI:10.1186/s40708-023-00211-w
Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone
{"title":"随机生存森林预测轻度认知障碍向阿尔茨海默病转化风险的可解释性","authors":"Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone","doi":"10.1186/s40708-023-00211-w","DOIUrl":null,"url":null,"abstract":"<p><p>Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease.\",\"authors\":\"Alessia Sarica, Federica Aracri, Maria Giovanna Bianco, Fulvia Arcuri, Andrea Quattrone, Aldo Quattrone\",\"doi\":\"10.1186/s40708-023-00211-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00211-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00211-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

随机生存森林(RSF)最近在预测轻度认知障碍(MCI)向阿尔茨海默病(AD)转化风险方面表现出比统计生存方法更好的Cox比例风险(CPH)。然而,RSF在实际临床环境中的应用仍然受到限制,因为它的黑箱性质。因此,我们的目的是利用来自阿尔茨海默病神经影像学倡议的稳定和进展患者(sMCI和pMCI)生物标志物的SHapley加性解释(SHAP)对RSF的可解释性进行全面研究。我们评估了三种全局解释——rsf特征重要性、排列重要性和SHAP重要性,并将它们与秩偏重叠(RBO)进行了定量比较。此外,我们评估了变量之间的多重共线性是否会干扰SHAP结果。最后,我们将pMCI测试患者分为高、中、低风险等级,探讨每个风险组中一名pMCI患者的个体SHAP解释。结果表明,RSF的准确率(0.890)高于CPH(0.819),且前8个特征之间排序的高度重叠(RBO > 90%)证明了RSF的稳定性和鲁棒性。带相关变量和不带相关变量的SHAP局部解释没有实质性差异,表明多重共线性没有改变模型。FDG、ABETA42和HCI是全球解释中最重要的特征,在局部解释中贡献最大。在所有临床和神经心理学评估中,FAQ、mPACCdigit、mPACCtrailsB和RAVLT immediate对增加进展风险的影响最大,这在pMCI患者的个体解释中尤为明显。总之,我们的研究结果表明,RSF是一种有用的工具,可以帮助临床医生评估转化为阿尔茨海默病的风险,而SHAP解释器通过可理解和可解释的个体结果提高了其临床实用性,突出了与阿尔茨海默病预后相关的关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease.

Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1