Lani Fox, Brad G Peter, April N Frake, Joseph P Messina
{"title":"预测采采蝇生态分布的贝叶斯最大熵模型。","authors":"Lani Fox, Brad G Peter, April N Frake, Joseph P Messina","doi":"10.1186/s12942-023-00349-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.</p><p><strong>Methods: </strong>This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.</p><p><strong>Results: </strong>Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.</p><p><strong>Conclusions: </strong>This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"31"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655428/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bayesian maximum entropy model for predicting tsetse ecological distributions.\",\"authors\":\"Lani Fox, Brad G Peter, April N Frake, Joseph P Messina\",\"doi\":\"10.1186/s12942-023-00349-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.</p><p><strong>Methods: </strong>This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.</p><p><strong>Results: </strong>Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.</p><p><strong>Conclusions: </strong>This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.</p>\",\"PeriodicalId\":48739,\"journal\":{\"name\":\"International Journal of Health Geographics\",\"volume\":\"22 1\",\"pages\":\"31\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Health Geographics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12942-023-00349-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Health Geographics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12942-023-00349-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A Bayesian maximum entropy model for predicting tsetse ecological distributions.
Background: African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.
Methods: This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.
Results: Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.
Conclusions: This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.
期刊介绍:
A leader among the field, International Journal of Health Geographics is an interdisciplinary, open access journal publishing internationally significant studies of geospatial information systems and science applications in health and healthcare. With an exceptional author satisfaction rate and a quick time to first decision, the journal caters to readers across an array of healthcare disciplines globally.
International Journal of Health Geographics welcomes novel studies in the health and healthcare context spanning from spatial data infrastructure and Web geospatial interoperability research, to research into real-time Geographic Information Systems (GIS)-enabled surveillance services, remote sensing applications, spatial epidemiology, spatio-temporal statistics, internet GIS and cyberspace mapping, participatory GIS and citizen sensing, geospatial big data, healthy smart cities and regions, and geospatial Internet of Things and blockchain.